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Abstract

An reliable, ease-to-use analytic algorithm is provided for Lane–Emden type equa-

tion which models many phenomena in mathematical physics and astrophysics. This

algorithm logically contains the well-known Adomian decomposition method. Different

from all other analytic techniques, this algorithm itself provides us with a convenient

way to adjust convergence regions even without P�aade technique. Some applications are
given to show its validity.
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1. Introduction

Many problems in mathematical physics and astrophysics can be modelled

by the so-called Lane–Emden type equation [1,2]

u00ðxÞ þ 2

x

� �
u0ðxÞ þ f ðuÞ ¼ 0; xP 0; ð1Þ

subject to the boundary conditions

uð0Þ ¼ a; u0ð0Þ ¼ 0; ð2Þ
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where the prime denotes the differentiation with respect to x, a is a constant,
f ðuÞ is a nonlinear function of uðxÞ. For example, it models the thermal be-
havior of a spherical cloud of gas acting under the mutual attraction of its

molecules and subject to the classical laws of thermodynamics [1,3,4] when

f ðuÞ ¼ um, the gravitational potential of the degenerate white-dwarf stars [2]
when f ðuÞ ¼ ðu2 � CÞ3=2, the isothermal gas spheres [1] when f ðuÞ ¼ expðuÞ
and so on.

The difficult element in the analysis of this type of equations is the singularity

behavior occurring at x ¼ 0. The series solution can be found by perturbation

techniques and Adomian decomposition method. However, the series solutions
are often convergent in restricted regions so that some techniques such as P�aade
method has to be applied to enlarge the convergence regions [1,3,4].

Liao developed a kind of analytic technique for nonlinear problems, namely

the homotopy analysis method [5]. Unlike perturbation techniques [6–10] and

other nonperturbative methods such as the artificial small parameter method

[11], the d-expansion method [12], the decomposition method [13–31] and so
on, the homotopy analysis method itself provides us with a convenient way to

control the convergence of approximation series and adjust convergence regions
when necessary. Briefly speaking, the homotopy analysis method has the fol-

lowing advantages:

1. it is valid even if a given nonlinear problem does not contain any small/large

parameters at all;

2. it itself can provide us with a convenient way to control the convergence

of approximation series and adjust convergence regions when necessary;

3. it can be employed to efficiently approximate a nonlinear problem by choos-
ing different sets of base functions.

The homotopy analysis method has been successfully applied to many

nonlinear problems such as viscous flows [32–35] and heat transfer [36], non-

linear oscillations [37,38], nonlinear water waves [39], Thomas–Fermi�s atom
model [40] and so on, and some elegant analytic results are obtained. Espe-

cially, by means of the homotopy analysis method Liao [41] gave a drag for-

mula for a sphere in a uniform stream, which agrees well with experimental
results in a considerably larger region of Reynolds number than those of all

reported analytic drag formulas. All of these successful applications of the

homotopy analysis method verify its validity for nonlinear problems in science

and engineering. In this paper the homotopy analysis method is further applied

to propose a reliable analytic algorithm for solving the Lane–Emden type

equation and some applications are given. Our analytic approximate solutions

contain Shawagfeh�s [3] and Wazwaz�s [4] solution given by Adomian de-

composition method and besides are convergent in considerably large regions
even without P�aade technique.
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2. The homotopy analysis method

2.1. Rule of solution expression

Obviously the Lane–Emden type equation can be expressed by the set of

power functions

S1 ¼ fxmjmP 0g ð3Þ
such that

uðxÞ ¼
Xþ1

k¼0
akxk; ð4Þ

where ak is coefficient to be determined. This provides us with the first Rule of
Solution Expression of the Lane–Emden type equation.

However, the set (3) is not the unique one to approximate the solution of the
Lane–Emden type equation. Due to (1) the solution uðxÞ decreases monoto-
nously as x increases. So, it is possible that uðxÞ can be approximate by the set
of base functions

S2 ¼ fð1þ xÞ�mjmP 0g ð5Þ
such that

uðxÞ ¼
Xþ1

k¼0
bkð1þ xÞ�k

; ð6Þ

where bk is coefficient to be determined. This provides us with the second Rule
of Solution Expression of the Lane–Emden type equation.

2.2. Choosing initial guess and auxiliary linear operator

Due to the boundary conditions (2) and the foregoing Rule of Solution

Expression, it is natural to choose

u0ðxÞ ¼ a ð7Þ

as the initial approximation of uðxÞ. Besides, due to (1) and the foregoing Rule
of Solution Expression, it is natural to choose

Lu ¼ u00ðxÞ þ 2

x

� �
u0ðxÞ ð8Þ

as the auxiliary linear operator having the property

L C0

�
þ C1

x

�
¼ 0; ð9Þ

where C1 and C2 are coefficients.
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2.3. Zero-order deformation equation

Let �h 6¼ 0 denote an auxiliary parameter, HðxÞ 6¼ 0 an auxiliary function,

q 2 ½0; 1� an embedding parameter. Due to (1), we define the nonlinear operator

N½Uðx; qÞ� ¼ o2Uðx; qÞ
ox2

þ 2

x

� �
oUðx; qÞ

ox
þ f ½Uðx; qÞ�: ð10Þ

Then, we construct the zero-order deformation equation

ð1� qÞL½Uðx; qÞ � u0ðxÞ� ¼ q�hHðxÞN½Uðx; qÞ�; q 2 ½0; 1�; xP 0;

ð11Þ

subject to the boundary conditions

Uð0; qÞ ¼ a;
oUðx; qÞ

ox

����
x¼0

¼ 0: ð12Þ

Due to the zero-order deformation equation, it holds

Uðx; 0Þ ¼ u0ðxÞ; Uðx; 1Þ ¼ uðxÞ; ð13Þ

respectively. Obviously, Uðx; qÞ can be expanded in the Maclaurin series of q in
the form

Uðx; qÞ ¼ Uðx; 0Þ þ
Xþ1

m¼1
umðxÞqm; ð14Þ

where

umðxÞ ¼
1

m!
omUðx; qÞ

oqm

����
q¼0

: ð15Þ

Note that the zero-order deformation equation (11) contains the auxiliary

parameter �h and the auxiliary function HðxÞ, so that Uðx; qÞ is dependent upon
both �h and HðxÞ. Assuming that both �h and HðxÞ are so properly chosen that
the series (14) is convergent when q ¼ 1, one has due to (13) that

uðxÞ ¼ u0ðxÞ þ
Xþ1

m¼1
umðxÞ: ð16Þ

2.4. High-order deformation equation

Differentiating the zero-order deformation equations (11) and (12) m times

with respect to q and then dividing by m! and finally setting q ¼ 0, we have the

mth-order deformation equation

L½umðxÞ � vmum�1ðxÞ� ¼ �hHðxÞRmðxÞ; ð17Þ
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subject to the boundary conditions

umð0Þ ¼ u0mð0Þ ¼ 0; ð18Þ

where

RmðxÞ ¼
1

ðm� 1Þ!
om�1N½Uðx; qÞ�

oqm�1

����
q¼0

ð19Þ

and

vk ¼
0; k6 1;
1; k > 1:

�
ð20Þ

Note that the mth-order deformation equations (17) and (18) are linear

equations and thus can be easily solved, especially by means of symbolic
software such as Mathematica, Maple, MathLab and so on.

2.5. Rule of Coefficient-Ergodicity

Due to the two different Rules of Solution Expression, the auxiliary function

HðxÞ can be either in the form

HðxÞ ¼ xa ð21Þ

or

HðxÞ ¼ x

ð1þ xÞb
; ð22Þ

where a or b is coefficient to be determined by the so-called Rule of Coefficient
Ergodicity, i.e. all coefficients in either (4) or (6) can be modified as the order

of approximation tends to infinity. Under the Rule of Coefficient Ergodicity,

our calculation indicate that, for all equations under consideration,

a ¼ 0 ð23Þ

for the 1st Rule of Solution Expression (4), and

b ¼ 5 ð24Þ

for the 2nd Rule of Solution Expression (6).
Note that we still have the freedom to choose the value of the auxiliary

parameter �h, which provides us with a convenient way to adjust the conver-
gence region of solution series, as shown in the following section.
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3. Applications

3.1. Lane–Emden equation

The thermal behavior of a spherical cloud of gas acting under the mutual

attraction of its molecules and subject to the classical laws of thermodynamics

is modelled by the well-known Lane–Emden equation [1,3,4]

u00ðxÞ þ 2

x

� �
u0ðxÞ þ umðxÞ ¼ 0; xP 0; ð25Þ

subject to the boundary conditions

uð0Þ ¼ 1; u0ð0Þ ¼ 0; ð26Þ

where mP 0 is a constant.

By means of Adomian decomposition method Shawagfeh [3] and Wazwaz

[4] obtained

uðxÞ ¼ 1þ
Xþ1

n¼1
Anx2n; ð27Þ

where

A1 ¼ � 1
6
; A2 ¼

m
120

; A3 ¼ �mð8m� 5Þ
3� 7!

; � � � ð28Þ

However, for m > 2, (27) is not valid in the whole region with uðxÞP 0, as

shown in Figs. 1 and 2.

Under the 1st Rule of Solution Expression described by (4), we have the

solution at the mth-order approximation

uðxÞ � 1þ
Xm
n¼1

lm;nð�hÞAnx2n; ð29Þ

where the coefficients An are exactly the same as (28) given by Adomian de-
composition method [3,4], and lm;nð�hÞ is defined by

lm;nð�hÞ ¼ ð��hÞn
Xm�n

k¼0

n� 1þ k
k

� �
ð1þ �hÞk; ð30Þ

called the approaching function. Note that the convergence regions of (29) is

enlarged as �h tends to zero from below, as shown in Figs. 1 and 2. Thus, one

can adjust the convergence regions of the series (29) simply by choosing a
proper value of the auxiliary parameter �h.
When �h ¼ �1 the expression (29) is the same as (27) given by Adomian

decomposition method, as shown in Figs. 1 and 2. Thus, the homotopy
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analysis solution (29) logically contains (27) given by Adomian decomposition

method [3,4].

Under the 2nd Rule of Solution Expression described by (6) we have the

mth-order approximation

uðxÞ �
X5m�2
n¼0

cm;n1

ð1þ xÞn ; ð31Þ

where cm;n1 is coefficient. Our calculations indicate that the above expression

is convergent for mP 0, as shown in Fig. 3.

x
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Fig. 1. Comparison of the numerical result of Lane–Emden equation when m ¼ 2:5 with 10th-

order analytic approximations. Filled circle: numerical result; circle: analytic result (27) given by

Adomian decomposition method; dashed line: homotopy analysis approximation (29) when

�h ¼ �1; dash-dotted line: homotopy analysis approximation (29) when �h ¼ �2=3; solid line: ho-
motopy analysis approximation (29) when �h ¼ �1=3.
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3.2. White-dwarf equation

The gravitational potential of the degenerate white-dwarf stars can be

modelled by the so-called white-dwarf equation [2]

u00ðxÞ þ 2

x

� �
u0ðxÞ þ ½u2ðxÞ � C�3=2 ¼ 0; xP 0; ð32Þ

subject to the boundary conditions

uð0Þ ¼ 1; u0ð0Þ ¼ 0: ð33Þ

x
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Fig. 2. Comparison of the numerical result of Lane–Emden equation when m ¼ 3:5 with analytic

approximations. Filled circle: numerical result; circle: analytic result (27) given by Adomian de-

composition method; dashed line: 10th-order homotopy analysis approximation (29) when �h ¼ �1;
dash-dotted line: 10th-order homotopy analysis approximation (29) when �h ¼ �1=3; dash-dot-
dotted line: 16th-order homotopy analysis approximation (29) when �h ¼ �1=6; solid line: 24th-
order homotopy analysis approximation (29) when �h ¼ �1=12.
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By means of Adomian decomposition method Wazwaz [4] obtained

uðxÞ ¼ 1þ
Xþ1

n¼1
Bnx2n; ð34Þ

where

B1 ¼ �ð1� CÞ3=2

6
; B2 ¼

ð1� CÞ2

40
;

B3 ¼ �ð1� CÞ5=2½5ð1� CÞ þ 14�
7!

; � � � ð35Þ

However, for small value of C, (34) is not valid in the whole region with

uðxÞP
ffiffiffiffi
C

p
, as shown in Figs. 4 and 5.
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Fig. 3. Comparison of the numerical result of Lane–Emden equation with the homotopy analysis

approximation (31). Circle: numerical result when m ¼ 3:5; filled circle: numerical result when

m ¼ 5; dashed line: 20th-order homotopy analysis approximation (31) when m ¼ 3:5 and �h ¼ �8;
solid line: 30th-order homotopy analysis approximation (31) when m ¼ 5 and �h ¼ �6.
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Under the 1st Rule of Solution Expression described by (4), we have the
solution at the mth-order approximation

uðxÞ � 1þ
Xm
n¼1

lm;nð�hÞBnx2n; ð36Þ

where the coefficients Bk are exactly the same as (35) given by Adomian de-

composition method [4], and lm;nð�hÞ is defined by (30). Note that the conver-
gence regions of (36) is enlarged as �h tends to zero from below, as shown in
Figs. 4 and 5. Thus, one can adjust the convergence region of the series (36)

simply by choosing a proper value of the auxiliary parameter �h.

x

u(
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1

Fig. 4. Comparison of the numerical result of white-dwarf equation when C ¼ 2=5 with 10th-order

analytic approximations. Filled circle: numerical result; circle: analytic result (34) given by Ado-

mian decomposition method; dashed line: homotopy analysis approximation (36) when �h ¼ �1;
solid line: homotopy analysis approximation (36) when �h ¼ �1=2; dash-dotted line: uðxÞ ¼

ffiffiffiffiffiffiffiffi
2=5

p
.
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When �h ¼ �1 the expression (36) is the same as (34) given by Adomian

decomposition method, as shown in Figs. 4 and 5. Thus, the homotopy
analysis solution (36) logically contains (34) given by Adomian decomposition

method [4].

Under the 2nd Rule of Solution Expression described by (6) we have the

mth-order approximation

uðxÞ �
X5m�2
n¼0

cm;n2

ð1þ xÞn ; ð37Þ
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Fig. 5. Comparison of the numerical result of white-dwarf equation when C ¼ 0 with analytic

approximations. Filled circle: numerical result; circle: analytic result (34) given by Adomian

decomposition method; dashed line: homotopy analysis approximation (36) when �h ¼ �1; dash-
dotted line: homotopy analysis approximation (36) when �h ¼ �1=2; dash-dot-dotted line: ho-

motopy analysis approximation (36) when �h ¼ �1=4; solid line: homotopy analysis approximation
(36) when �h ¼ �1=8; long-dash line: uðxÞ ¼ 0.
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where cm;n2 is coefficient. Our calculations indicate that the above expression is

convergent for 06C6 1 when �106 �h < 0, as shown in Fig. 6.

3.3. Isothermal gas spheres equation

Isothermal gas spheres [1] are modelled by

u00ðxÞ þ 2

x

� �
u0ðxÞ þ euðxÞ ¼ 0; xP 0; ð38Þ

subject to the boundary conditions

uð0Þ ¼ 0; u0ð0Þ ¼ 0: ð39Þ

x

u(
x)
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Fig. 6. Comparison of the numerical result of white-dwarf equation with the 20th-order approx-

imation (37) when �h ¼ �10. Circle: numerical result when C ¼ 2=5; filled circle: numerical result

when C ¼ 0; dashed line: homotopy analysis approximation (37) when C ¼ 2=5; solid line: ho-

motopy analysis approximation (37) when C ¼ 0; long-dash line: uðxÞ ¼
ffiffiffiffiffiffiffiffi
2=5

p
.
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By means of Adomian decomposition method Wazwaz [4] obtained

uðxÞ ¼
Xþ1

n¼1
Cnx2n; ð40Þ

where

C1 ¼ � 1
6
; C2 ¼

1

5� 4!
; C3 ¼ � 8

21� 6!
; � � � ð41Þ

However, (40) is valid in a rather restricted region 06 x < 3:5, as shown in Fig. 7.
Under the 1st Rule of Solution Expression described by (4), we have the

solution at the mth-order approximation

x

u(
x)

0 5 10 15
-5

-4

-3

-2

-1

0

Fig. 7. Comparison of the numerical result of isothermal gas spheres equation with 20th-order

analytic approximations. Filled circle: numerical result; circle: analytic result (40) given by Ado-

mian decomposition method; dashed line: homotopy analysis approximation (42) when �h ¼ �1;
dash-dotted line: homotopy analysis approximation (42) when �h ¼ �1=3; dash-dot-dotted line:

homotopy analysis approximation (42) when �h ¼ �1=6; solid line: homotopy analysis approxi-
mation (42) when �h ¼ �1=9.

S. Liao / Appl. Math. Comput. 142 (2003) 1–16 13



uðxÞ � 1þ
Xm
n¼1

lm;nð�hÞCnx2n; ð42Þ

where the coefficients Ck are exactly the same as (41) given by Adomian de-

composition method [4], and lm;nð�hÞ is defined by (30). Note that the conver-
gence regions of (42) is enlarged as �h tends to zero from below, as shown in

Fig. 7. Thus, one can adjust the convergence regions of the series (42) simply
by choosing a proper value of the auxiliary parameter �h.
When �h ¼ �1, the expression (42) is the same as (40) given by Adomian

decomposition method, as shown in Fig. 7. Thus, the homotopy analysis so-

lution (42) logically contains (40) given by Adomian decomposition method [4].

4. Conclusions and discussions

In the frame of the homotopy analysis method an analytic algorithm is given

for Lane–Emden type equation which can model many phenomena in math-

ematical physics and astrophysics. The analytic algorithm is reliable and ease-

to-use. Its validity is verified by three examples.

First of all, our solutions (29), (36) and (42) contain the corresponding re-

sults given by Adomian decomposition method [4], thus our algorithm is more

general than Adomian decomposition method. This is mainly because

lm;kð�1Þ ¼ 1 for 06 k6m, as pointed out by Liao [33]. Second, different from
all other algorithms, the convergence regions of our solutions (29), (36) and

(42) can be easily adjusted by the auxiliary parameter �h, as shown in Figs. 1, 2,
4, 5 and 7. So, even without P�aade method, our solutions (29), (36) and (42) can
be valid in large enough regions. Finally, our algorithm provides two sets of

different base functions (3) and (5) to approximate the solution of the Lane–

Emden type equation. This provides us with the possibility to approximate

solutions more efficiently, as shown in Figs. 3 and 6. All of these verify once

again the validity of the homotopy analysis method and its potential in solving
nonlinear problems in physics and astrophysics.
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