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An analytic method for strongly non-linear problems, namely the homotopy analysis
method (HAM), is applied to give convergent series solution of non-similarity boundary-
layer flows. As an example, the non-similarity boundary-layer flows over a stretching flat
sheet are used to show the validity of this general analytic approach. Without any assump-
tions of small/large quantities, the corresponding non-linear partial differential equation
with variable coefficients is transferred into an infinite number of linear ordinary differen-
tial equations with constant coefficients. More importantly, an auxiliary artificial parame-
ter is used to ensure the convergence of the series solution. Different from previous
analytic results, our series solutions are convergent and valid for all physical variables in
the whole domain of flows. This work illustrates that, by means of the homotopy analysis
method, the non-similarity boundary-layer flows can be solved in a similar way like sim-
ilarity boundary-layer flows. Mathematically, this analytic approach is rather general in
principle and can be applied to solve different types of non-linear partial differential equa-
tions with variable coefficients in science and engineering.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Since Prandtl [1] proposed the revolutionary concept of boundary-layer flows of viscous fluid in 1904, the boundary-layer
theory [2–11] has been developing greatly and applied in nearly all regions of fluid mechanics. When similarity solutions
exist, the boundary-layer flows are governed by ordinary differential equations (ODEs), which are much easier to solve than
the original partial differential equations (PDEs). Owing to this mathematical simplicity, most researchers focused on sim-
ilarity boundary-layer flows: in contrast to the large number of publications in similarity boundary-layer flows [9–11], arti-
cles on non-similarity flows are much less.

Without loss of generality, let us consider here the non-similarity boundary-layer flows of Newtonian fluids over a
stretching flat sheet [12–22], which have important engineering applications such as polymer processing unit in a chemical
plant, metal working process in metallurgy and aerodynamic extrusion of plastic sheets. This kind of flow is used here as an
example to show the validity of the analytic approach which has general meanings. Two forces in opposite directions with
same magnitude are added along the sheet. Thus, there is a rest point on the sheet, which is defined as the origin of the coor-
dinate system. The x and y axis are along and perpendicular to the sheet, respectively. The fluid is at rest far from the sheet
(i.e., as y! þ1). Due to the symmetry of flows, we can only consider the flows in the upper quarter plane x P 0; y P 0. Let
UwðxÞ denote the stretching velocity of the sheet, ðu; vÞ the velocity components of the fluid, m the kinematic viscosity of the
fluid, respectively. As mentioned by Prandtl [1], the velocity variation across the flow direction is much larger than that in
. All rights reserved.
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the flow direction, so that there exists a thin boundary-layer near the sheet. In the frame of the boundary-layer theory, the
flows are governed by
ou
ox
þ ov

oy
¼ 0; ð1Þ

u
ou
ox
þ v

ou
oy
¼ m

o2u
oy2 ; ð2Þ
subject to the boundary conditions
u ¼ UwðxÞ; v ¼ 0 at y ¼ 0; ð3Þ
and
u ¼ 0;
ov
ox
¼ 0 at x ¼ 0; ð4Þ

u! 0 as y! þ1: ð5Þ
The similarity solutions exist only in some special cases of UwðxÞ. Following Görtler [23], we define the so-called principal
function
DðxÞ ¼ U0wðxÞ
U2

wðxÞ

Z x

0
UwðnÞdn: ð6Þ
It is easy to find out that, when DðxÞ equals to a constant b, i.e.,
U0wðxÞ
U2

wðxÞ

Z x

0
UwðnÞdn ¼ b; ð7Þ
there exists the similarity solution
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Z x

0
UwðnÞdn

s
gðgÞ; g ¼ UwðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
R x

0 UwðnÞdn
q y; ð8Þ
in which w is stream function, and gðgÞ is governed by an ODE
g000 þ 1
2

gg00 � bg02 ¼ 0; ð9Þ
subject to the boundary conditions
gð0Þ ¼ 0; g0ð0Þ ¼ 1; g0ðþ1Þ ¼ 0: ð10Þ
The corresponding local coefficient of skin friction is given by
Cf ¼
sw

1
2 qU2

wðxÞ
¼ 2g00ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðnÞdn

s
: ð11Þ
For example, in case of UwðxÞ ¼ axk, where að1þ kÞ > 0, it holds b ¼ k=ð1þ kÞ, and then the similarity criteria (7) is satisfied
and thus there exists the similarity solution
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

am
ð1þ kÞ

r
x

kþ1
2 gðgÞ; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ kÞ

m

r
x

k�1
2 y: ð12Þ
In this way, the system of the two coupled non-linear PDEs becomes an ODE, which is much easier to solve than the original
PDEs. So, when similarity solutions exist, the problem is greatly simplified from the viewpoint of mathematics.

For similarity boundary-layer flows, velocity profiles at different x are similar. However, such kind of similarity is lost for
non-similarity flows [24–29]. Physically speaking, the non-similarity boundary-layer flows are more general in nature and in
our everyday life, and thus are more important than similarity ones. As mentioned by Sparrow et al. [26], the non-similarity
may be caused by (a) spatial variations in the free stream velocity, (b) sheet mass transfer, and (c) transverse curvature. How
about the evolution of velocity profiles, local coefficient of skin friction and boundary-layer thickness of non-similarity
flows? Are there any relationships between the similarity and non-similarity boundary-layer flows? To answer these ques-
tions, we had to directly investigate non-similarity boundary-layer flows.

When similarity solutions do not exist, one had to solve a non-linear PDE. From mathematical viewpoints, it is much more
difficult to solve a non-linear PDE than ODE. There are two different approaches: analytic and numerical ones. In the inves-
tigation of non-similarity boundary-layer flows, numerical methods are widely applied. As shown in [30–37], one can use
numerical methods to obtain approximate results at a large number of discretized points. However, one had to replace
the infinite domain by a finite ones, and this brings some additional errors and uncertainty into the numerical results. By
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means of analytical methods, one can solve the non-linear PDEs in the infinite domain. However, it is a pity that, using the
traditional analytic techniques such as perturbation techniques, it is hard to get analytic approximations that are valid and
accurate for all physical variables. This is mainly because perturbation methods are often dependent on small variables or
parameters, and thus perturbation results are generally not valid for all possible physical parameters/variables. Currently,
Cimpean et al. [29] applied the perturbation techniques, combined with numerical techniques, to solve a free convection
non-similarity boundary-layer problem over a vertical flat sheet in a porous medium. Like most of perturbation solutions,
their results are valid only for small and large x, which are regarded as perturbation quantities. Among the analytic methods
for non-similarity thermal boundary-layer problems, ‘‘the method of local similarity” [27,28] seems to be most frequently
applied, owing to its conceptual and computational simplicity. By means of ‘‘the method of local similarity”, one assumes
that the non-similarity terms in governing equations are small enough so that they can be regarded as zero, and then the
original PDEs become an ODE. However, the results given by ‘‘the method of local similarity” are of ‘‘uncertain accuracy”,
as pointed out by Sparrow et al. [27], and is valid only for small n in general, as pointed out by Massoudi [28]. These con-
clusions are easy to understand, because non-similarity terms are certainly not zero and must be considered. Sparrow et
al. [24,26,27] introduced the so-called ‘‘method of local non-similarity”, which was currently applied by Massoudi [28] to
solve a non-similarity flows of non-Newtonian fluid over a wedge. Differentiating the original governing equations by the
dimensionless variable n along the free stream velocity, Massoudi [28] gave two additional auxiliary non-linear PDEs for both
momentum and energy equations, then regarded the variable n in these two PDEs to be a constant so as to reduce them as a
system of ODEs, and finally used numerical techniques to solve the more complicated system of four equations, i.e., the two
original PDEs plus the two auxiliary PDEs. In some cases, the results given by ‘‘the method of local non-similarity” agree well
with numerical or series solutions, as reported in [24,25]. However, it is a pity that Massoudi [28] only gave numerical results
for small n ðn 6 0:4Þ. Owing to above-mentioned mathematical difficulties, the publications in non-similarity boundary-layer
flows are much less than those in similarity ones, although the former seems more important not only in theory but also in
applications.

Based on homotopy, which is a basic concept in topology, a analytic method, namely the homotopy analysis method
(HAM) [38–42], is proposed and then widely applied to solve strongly non-linear problems in science, engineering and fi-
nance [43–56]. Unlike perturbation techniques, the homotopy analysis method is independent of any small/large physical
parameters. Besides, different from perturbation and traditional non-perturbation methods, it provides a simple way to en-
sure the convergence of solution series so that one can always get accurate enough approximations even for strongly non-
linear problems. Furthermore, unlike all other analytic techniques, the homotopy analysis method provides great freedom to
choose the so-called auxiliary linear operator so that one can approximate a non-linear problem more effectively by means
of better base functions. This kind of freedom is so large that the second-order non-linear two-dimensional Gelfand equation
can be solved even by means of a fourth-order auxiliary linear operator, as shown in [41]. Especially, by means of the homot-
opy analysis method, a few new solutions of some non-linear problems [54,55] are found, which are neglected by all other
analytic methods and even by numerical techniques. Furthermore, the homotopy analysis method has been applied to solve
some non-linear partial differential equations, such as unsteady similarity boundary-layer flows [40], Black–Scholes type
equation in finance for American put option [52,53] and interaction of non-linear water wave and exponential shear currents
[56]. These previous work provide us a good background to apply the HAM to solve non-linear PDEs with variable
coefficients.

In this paper, we provide a general analytic approach to solve non-similarity boundary-layer flows through a typical
example. In Section 2, the basic ideas of the analytic approach are described. In Section 3, two kinds of non-similarity flows
are investigated and the accurate series solutions are obtained, which are convergent and valid in the whole spatial regions.
In Section 4, an approximate formula of local coefficient of skin friction is provided for general non-similarity flows, which
gives rather accurate results for all physical parameters. Discussions and conclusions are given in Section 5.

2. Analytic approach based on the HAM

When UwðxÞ does not satisfy the similarity criteria (7), we had to solve a non-linear PDE. Using the streamfunction w, the
non-similarity boundary-layer flows are governed by
m
o3w
oy3 þ

ow
ox

o2w
oy2 �

ow
oy

o2w
oxoy

¼ 0; ð13Þ
subject to the boundary conditions
w ¼ 0;
ow
oy
¼ UwðxÞ at y ¼ 0;

ow
oy
! 0 as y! þ1: ð14Þ
Using the transformation
g ¼ y
m1=2rðxÞ ; w ¼ m1=2rðxÞf ðx;gÞ; ð15Þ
where rðxÞ > 0 is a real function to be chosen later, one has
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Then, the governing equation becomes
o3f
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2
½r2ðxÞ�0f o2f

og2 þ r2ðxÞ of
ox

o2f
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og

o2f
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 !
¼ 0; ð16Þ
subject to the boundary conditions
f ðx;0Þ ¼ 0; f gðx;0Þ ¼ UwðxÞ; f gðx;þ1Þ ¼ 0; ð17Þ
where fg denotes the partial derivative with respect to g. Note that Eq. (16) is a non-linear PDE with variable coefficient r2ðxÞ,
and besides Eq. (15) is not the traditional similarity transformation.

There are an infinite number of sheet stretching velocity UwðxÞ which does not satisfy the similarity-criteria (7). Here,
without loss of generality, let us consider the case UwðxÞ ¼ UwðnÞ, where n ¼ CðxÞ is a given real function of x. By means
of the transformation1
n ¼ CðxÞ; ð18Þ
Eq. (16) becomes
o3f
og3 þ r1ðnÞf

o2f
og2 þ r2ðnÞ

of
on

o2f
og2 �
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og

o2f
onog

 !
¼ 0; ð19Þ
subject to the boundary conditions
f ðn;0Þ ¼ 0; f gðn;0Þ ¼ UwðnÞ; f gðn;þ1Þ ¼ 0; ð20Þ
where
r1ðnÞ ¼
1
2
½r2ðxÞ�0; r2ðnÞ ¼ C0ðxÞr2ðxÞ;
in which x is expressed by n, i.e., x ¼ C�1ðnÞ.
The corresponding local coefficient of skin friction of non-similarity flows is given by
CfðxÞ ¼
sðxÞ

1
2 qU2

wðxÞ
¼ 2m1=2

rðxÞU2
wðxÞ

o2f
og2

�����
g!0

: ð21Þ
So, it is important to get accurate results of fggðn;0Þ. The replacement boundary-layer thickness dðxÞ is defined by
dðxÞUwðxÞ ¼
Z þ1

0
uðx; yÞdy;
which gives
dðxÞ ¼ 1
UwðxÞ

Z þ1

0
uðx; yÞdy: ð22Þ
For the sake of simplicity, define a non-linear operator
Nf ¼ o3f
og3 þ r1ðnÞf

o2f
og2 þ r2ðnÞ

of
on

o2f
og2 �

of
og

o2f
onog

 !
: ð23Þ
Let q 2 ½0;1� denote an embedding parameter, �h–0 an auxiliary parameter (called convergence-control parameter [42]), L
an auxiliary linear operator and f0ðn;gÞ an initial guess that satisfies the boundary conditions (20), respectively. Here, the
auxiliary linear operator L has the properties
L½0� ¼ 0 ð24Þ
and
L a1ðqÞw1ðn;g; qÞ þ a2ðqÞw2ðn;g; qÞ½ � ¼ a1ðqÞL½w1ðn;g; qÞ� þ a2ðqÞL½w2ðn;g; qÞ�; ð25Þ
where a1ðqÞ; a2ðqÞ; w1ðn;g; qÞ and w2ðn;g; qÞ are any real functions. Both L and f0ðn;gÞ will be chosen later. Here, we just
emphasize that we have great freedom to choose the auxiliary linear operator L and the initial guess f0ðn;gÞ. Then, we con-
struct the so-called zeroth-order deformation equation
e that, if CðxÞ ¼ x, then n ¼ x and UwðnÞ ¼ UwðxÞ. So, our approach described below is valid for any UwðxÞ in general.
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ð1� qÞL Fðn;g; qÞ � f0ðn;gÞ½ � ¼ q�hN½Fðn;g; qÞ�; ð26Þ
subject to the boundary conditions on the sheet
Fðn;0; qÞ ¼ 0; Fgðn;0; qÞ ¼ UwðnÞ; ð27Þ
and the boundary condition at infinity
Fgðn;þ1; qÞ ! 0: ð28Þ
Note that f0ðn;gÞ satisfies the boundary conditions (20) and L has the property (24). Thus, when q ¼ 0, the solution of Eqs.
(26)–(28) reads
Fðn;g; 0Þ ¼ f0ðn;gÞ: ð29Þ
When q ¼ 1, since �h–0, Eqs. (26)–(28) are equivalent to Eqs. (19) and (20), provided
Fðn;g;1Þ ¼ f ðn;gÞ: ð30Þ
Thus, as the embedding parameter q increases from 0 to 1, Fðn;g; qÞ varies continuously from the initial guess f0ðn;gÞ to the
exact solution f ðn;gÞ of Eqs. (19) and (20). This kind of continuous variation (or deformation) is called homotopy in topology.
That is the reason why we call Eqs. (26)–(28) the zeroth-order deformation equation. Expanding Fðn;g; qÞ in Taylor series
with respect to q and using (29), we have
Fðn;g; qÞ ¼ f0ðn;gÞ þ
Xþ1
m¼1

fmðn;gÞqm; ð31Þ
where
fmðn;gÞ ¼
1

m!

omFðn;g; qÞ
oqm

����
q¼0
:

Note that, the convergence of the series (31) depends on the initial guess f0ðn;gÞ, the auxiliary linear operator L and the
auxiliary parameter �h. Assuming that all of them are properly chosen so that the series (31) converges at q ¼ 1, we have
due to (30) the series solution
f ðn;gÞ ¼ f0ðn;gÞ þ
Xþ1
m¼1

fmðn;gÞ: ð32Þ
This provides us a relationship between the initial guess f0ðn;gÞ and the exact solution f ðn;gÞ.
The governing equation and boundary conditions of fmðn;gÞ are deduced directly from the zeroth-order deformation

equations (26)–(28). For simplicity, write
~f k ¼ f0ðn;gÞ; f1ðn;gÞ; f2ðn;gÞ; . . . ; fkðn;gÞf g:
Based on the definition of fmðn;gÞ, Liao [38] provided a general approach to give governing equations and boundary condi-
tions for fmðn;gÞ. Currently, Sajid et al. [51] suggested an equivalent approach: directly substituting the series (31) into the
zeroth-order deformation equations (26)–(28), and equating the coefficient of the like-power of q, one obtains the mth-order
deformation equation
L fmðn;gÞ � vmfm�1ðn;gÞ
� 	

¼ �hRmð~f m�1Þ; ð33Þ
subject to the boundary conditions on the sheet
fm ¼ 0;
ofm

og
¼ 0; at y ¼ 0 ð34Þ
and the boundary condition at infinity
ofm

og
! 0 as y! þ1; ð35Þ
where
Rmð~f m�1Þ ¼
o3fm�1

og3 þ r1ðnÞ
Xm�1

n¼0

fm�1�n
o2fn

og2 þ r2ðnÞ
Xm�1

n¼0

ofn

on
o2fm�1�n

og2 � ofn

og
o2fm�1�n

onog

 !
ð36Þ
and
vm ¼
0; m 6 1;
1; m > 1:



ð37Þ
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The above equations are exactly the same as those given by Liao’s approach [38]. For details, please refer to Liao [41,42] and
Sajid et al. [51]. It should be emphasized here that the high-order deformation equations (33)–(35) are linear. Besides, unlike
perturbation techniques, we do not need any small/large parameters to obtain these linear differential equations. Further-
more, different from ‘‘the method of local similarity” and ‘‘the method of local non-similarity”, we neither enforce the
non-similarity terms to be zero, nor regard the variable n as a constant. Finally, as mentioned before, we have great freedom
to choose L. This freedom is so large that, in the frame of the HAM, a system of non-linear PDEs can be sometimes trans-
ferred into an infinite number of linear ODEs. We will illustrate this point soon.

Now, let us choose the initial guess f0ðn;gÞ and the auxiliary linear operator L. Mathematically, the essence to approx-
imate a non-linear differential equation is to find a set of proper base functions to fit its solutions. Physically, it is well-known
that most viscous flows decay exponentially at infinity (i.e., y! þ1). So, for non-similarity boundary-layer flows over a
stretching flat sheet, the velocities u and v should decay exponentially at infinity (i.e., y! þ1). So, even if we do not know
now the details of the solution f ðn;gÞ, we are quite sure that the solution f ðn;gÞ should be in such a form
f ðn;gÞ ¼
Xþ1
m¼0

Xþ1
n¼0

am;nn
n expð�mgÞ; ð38Þ
where am;n is constant coefficient to be determined. It is well-known that the velocity of Blasius’ similarity boundary-layer
flows [2] decays like expð�g2Þ far from the sheet, which is faster than expð�myÞ for any real number m > 0. However, it
has been found that the steady/unsteady similarity boundary-layer flows of Newtonian/non-Newtonian fluid over a
stretching flat sheet can be expressed in forms similar to (38) and the corresponding series solutions agree well with
numerical ones, as shown in [39,54,55]. So, we are quite sure that the non-similarity boundary-layer flows can be ex-
pressed by (38). Our purpose is to give convergent series solution of the non-linear PDEs (19) and (20), expressed in
the form (38). Note that, the above expression, namely the solution expression of f ðn;gÞ, is rather important in the frame
of the HAM, as shown below.

To satisfy the solution expression (38) and the boundary conditions (20), we choose the initial guess
f0ðn;gÞ ¼ UwðnÞð1� e�gÞ; ð39Þ
which contains the simplest but leading terms (as g! þ1) in (38). Note that f0ðn;gÞ satisfies the boundary conditions (20)
and decays exponentially as g! þ1. Due to the freedom on the choice of the initial guess, one can add more additional
terms in f0ðn;gÞ, but the above initial guess is good enough for our current purpose, as shown later.

As mentioned before, we have great freedom to choose the auxiliary linear operator L. However, this freedom is re-
stricted by the solution expression (38) and the boundary conditions (20), which we must consider in the choice of L. Note
that the original governing equation (19) is a non-linear PDE with variable coefficients. So, if we choose L as a partial dif-
ferential operator, the high-order deformation equation (33) is a partial differential ones. It is well-known that, in general, a
PDE with variable coefficients is more difficult to solve than an ODE with constant coefficients. So, mathematically, it is much
easier to solve Eq. (33) if we could choose L as an linear differential operator which contains derivatives only with respect to
n or g, but does not contain any variable coefficients. Physically, for boundary-layer flows, the velocity variation across the
flow direction is much larger than that in the flow direction. Therefore, the derivatives ofm

og ;
o2 fm
og2 ;

o3 fm
og3 are considerably larger

and thus physically more important than ofm
on ;

o2fm
onog. Considering all of these mentioned above, we choose the auxiliary linear

operator
Lw ¼ o3w
og3 þ a2ðnÞ

o2w
og2 þ a1ðnÞ

ow
og
þ a0ðnÞw; ð40Þ
where a0ðnÞ; a1ðnÞ and a2ðnÞ are real functions to be determined. Let w�1ðg; nÞ, w�2ðg; nÞ and w�3ðg; nÞ denote the three non-zero
solutions of Lw ¼ 0, i.e.,
L½w�1ðg; nÞ� ¼L½w�2ðg; nÞ� ¼L½w�3ðg; nÞ� ¼ 0: ð41Þ
Then, the general solution of the high-order deformation equations (33) is given by
fmðg; nÞ ¼ f �mðg; nÞ þ C1ðnÞw�1ðg; nÞ þ C2ðnÞw�2ðg; nÞ þ C3ðnÞw�3ðg; nÞ; ð42Þ
where f �mðg; nÞ is a special solution of (33), and C1ðnÞ, C2ðnÞ, C3ðnÞ are real functions determined by the boundary conditions
(34) and (35). The special solutions w�1ðg; nÞ, w�2ðg; nÞ and w�3ðg; nÞ should be chosen in such a way that the above solution
fmðg; nÞ obeys the so-called solution expression (38), and besides the boundary conditions (34) and (35) are satisfied. Obvi-
ously, if the special solutions w�1ðg; nÞ, w�2ðg; nÞ and w�3ðg; nÞ are independent of n, then Eq. (33) becomes an ODE with constant
coefficients and thus is easy to solve. There are many ways to do so. For example, according to the solution expression (38),
we can choose
w�1 ¼ 1; w�2 ¼ expð�gÞ; w�3 ¼ expð�2gÞ:
In this case, the general solution of Eq. (33) reads
fmðg; nÞ ¼ f �mðg; nÞ þ C1 þ C2 expð�gÞ þ C3 expð�2gÞ: ð43Þ
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The above expression automatically satisfies the boundary condition (35) at infinity, thus only two integral coefficients can
be determined so that the solution of Eq. (33) is not unique. To avoid this, we replace w�3 ¼ expð�2gÞ by w�3 ¼ expðgÞ. Then,
the general solution of Eq. (33) becomes
fmðg; nÞ ¼ f �mðg; nÞ þ C1 þ C2 expð�gÞ þ C3 expðgÞ: ð44Þ
To satisfy the boundary condition (35) at infinity, it holds C3 ¼ 0. Then, the integral coefficients C1 and C2 are uniquely deter-
mined by the two boundary conditions (34) on the sheet. In this way, the solution of the high-order deformation equations
(33)–(35) is unique, and satisfies all of the boundary conditions (34) and (35), but does not disobey the so-called solution
expression (38). Finally, using the definition (40) of L, and substituting
w�1ðn;gÞ ¼ 1; w�2ðn;gÞ ¼ expð�gÞ; w�3ðn;gÞ ¼ expðgÞ
into (41), we have a set of algebraic equations
a0ðnÞ ¼ 0;
� 1þ a2ðnÞ � a1ðnÞ þ a0ðnÞ ¼ 0;
1þ a2ðnÞ þ a1ðnÞ þ a0ðnÞ ¼ 0;
whose solution reads
a0ðnÞ ¼ 0; a1ðnÞ ¼ �1; a2ðnÞ ¼ 0:
Substituting them into (40), we have the auxiliary linear operator
Lf ¼ o3f
og3 �

of
og
; ð45Þ
which does not contain any variable coefficients. Due to the freedom on the choice of L, it is possible for us to use
w�3 ¼ expðjgÞ, where j P 1 is a positive integer, to define L in other forms. Besides, the order of L might be even not equal
to 3, as pointed out by Liao and Tan [41]. So, there might exist the best auxiliary linear operator L among all of these possible
ones. However, for the purpose of this paper, although the auxiliary linear operator (45) might be not the best, it is good
enough for our purpose, as described later.

Now, under the definition (39) of the initial guess and the definition (45) of the auxiliary linear operator L, it is easy to
solve the linear ODEs (33) to (35) which contains only constant coefficients. The special solution of (33) reads
f �mðn;gÞ ¼ vmfm�1ðn;gÞ þ �hL�1½Rmð~wm�1Þ�; ð46Þ
where L�1 denotes the inverse operator of L. According to the definition (45), we have
L�1 cðnÞ expð�mgÞ½ � ¼ cðnÞ expð�mgÞ
mð1�m2Þ ð47Þ
for any a real function cðnÞ and positive integer m P 1. Besides, L�1 has the linear property
L�1 b1ðnÞg1ðgÞ þ b2ðnÞg2ðgÞ½ � ¼ b1ðnÞL�1½g1ðgÞ� þ b2ðnÞL�1½g2ðgÞ� ð48Þ
for any real functions b1ðnÞ; b2ðnÞ; g1ðgÞ and g2ðgÞ. Then, the solution of the high-order deformation Eqs. (33)–(35) is
fmðn;gÞ ¼ f �mðg; nÞ þ C0 þ C1 expð�gÞ;
where
C0 ¼ �f �mðn;0Þ �
of �m
og

����
g¼0

; C1 ¼
of �m
og

����
g¼0
are determined by the boundary conditions (34) and (35). Thus, using (46)–(48), it is rather easy to solve the high-order
deformation equations (33)–(35), especially by means of symbolic software such as Mathematica, MathLab and Maple.

Finally, it should be emphasized that fmðn;gÞ contains the auxiliary parameter �h, called the convergence-control param-
eter. As pointed out in the previous work [38–40,44–49,51], it is the auxiliary parameter �h which provides us with a simple
way to ensure the convergence of the series solution for all physical variables/parameters. We will show this point in Section
3.

3. Series solution of two non-similarity flows

There are an infinite number of sheet velocities UwðxÞ that do not satisfy the similarity criteria (7) and thus lead to
non-similarity boundary-layer flows. Without loss of generality, let us consider here two sheet stretching velocities listed



Table 1
Surface stretching velocity and the related criterion function DðxÞ

UwðxÞ DðxÞ

Example 1 x
1þx

x�lnð1þxÞ
x2

Example 2 x
ð1þxÞ � x2

2ð1þxÞ2
2

ðxþ2Þ2
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in Table 1. Recall that DðxÞ ¼ constant is the criterion of existence of similarity solutions. So, according to Table 1, there are
no similarity solutions. Note that the two sheet stretching velocities considered here tend to a constant as x! þ1. This is
reasonable, because UwðxÞ is often bounded in practice.

3.1. Example 1: Uw ¼ x=ð1þ xÞ

In this case, the stretching velocity UwðxÞ increases monotonously from 0 to 1 along the sheet. Note that Uw ! x as x! 0,
and Uw ! 1 as x! þ1, respectively. Physically, the flows near x ¼ 0 should be close to the similarity ones with Uw ¼ x, and
besides, the flows as x! þ1 should be close to the similarity ones with Uw ¼ 1, respectively. For similarity flows with
Uw ¼ x and Uw ¼ 1, the similarity variables are y=

ffiffiffi
m
p

and y=
ffiffiffiffiffi
mx
p

, respectively. Therefore, according to the definition (15)
of the variable g, we choose
rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
;

so that g tends to y=
ffiffiffi
m
p

as x! 0, and to y=
ffiffiffiffiffi
mx
p

as x! þ1, respectively.
For the sake of simplicity, we define
n ¼ CðxÞ ¼ x
1þ x

;

which gives
Uw ¼ n; r1ðnÞ ¼
1
2
; r2ðnÞ ¼ 1� n:
Using symbolic computation software (such as Mathematica), it is easy to solve the system of the linear ODEs (33)–(35)
(with constant coefficients) to get high-order approximations. Obviously, it is important to ensure the convergence of the
solution series (32) for all possible physical variables 0 6 x < þ1 and 0 6 y < þ1. Otherwise, the series solution (32) is
useless. Fortunately, our series solution (32) contains the convergence-control parameter �h, which provides us a simple
way to adjust and control the convergence region and rate of series solution, as mentioned by Liao [38–40] and others
[44–49,51]. To show this, let us first consider fggðn;0Þ, which is closely related to the local coefficient of skin friction via
(21). Note that, mathematically, fggðn;0Þ is a function of the physical variable n and the convergence-control parameter �h.
For a given value of n, fggðn; 0Þ is a power series of �h and thus its convergence is determined by �h. However, physically, for
a given value of n, the local coefficient of skin friction is unique, i.e., there should exist one and only one value of fggðn;0Þ
(we assume here that no multiple solutions exist). Therefore, for given n, all convergent series solutions of fggðn;0Þ given
by different values of �h should converge to the same value. So, regarding �h as a variable, we can plot the curves of
fggðn;0Þ � �h for different values of n such as n ¼ 1=4, 1/2, 3/4 and 1, as shown in Fig. 1. At n ¼ 1, fggðn;0Þ converges to the
same value for all �h in the region �1 6 �h < �0:25. At n ¼ 1=4, it also converges to the same value (which is different from
that at n ¼ 1) when �1 6 �h < �0:25. However, at n ¼ 1=2 and 3/4, fggðn;0Þ converges in the region�0:75 < �h < �0:25 but
diverges when �h ¼ �1. As shown in Fig. 2, when �h ¼ �1 and �0.9, fggðn;0Þ converges only for small n and n ¼ 1, correspond-
ing to small x and x! þ1, but diverges in a region 0:5 6 n < 1. Thus, when �h < �0:9, the series of fggðn;0Þ is divergent if x is
neither small nor very large. Fortunately, as illustrated by Liao [38–40] and others [44–49,51], the homotopy analysis meth-
od provides us freedom to choose the value of the convergence-control parameter �h, and therefore we can get series of
fggðn;0Þ convergent in the whole region 0 6 n 6 1 (corresponding to 0 6 x < þ1), simply by choosing �h ¼ �1=2, as shown
in Fig. 2.

Furthermore, it is found that, when �h ¼ �1=2, our series solution (32) is convergent even for all physical variables
0 6 n 6 1 and 0 6 g < þ1, corresponding to 0 6 x < þ1 and 0 6 y < þ1. It should be emphasized that, as proved by Liao
[38] in general, the HAM solution series converges to solutions of original non-linear PDEs as long as it is not divergent. This
is indeed true: our series solution agree well with numerical ones. Note that, as proved by Liao [38], other non-perturbation
techniques such as Adomian’s decomposition method [57–60], the d-expansion method [61,62] and Lyapunov’s artificial
small parameter method [63], are special cases of the homotopy analysis method in case of �h ¼ �1. So, if these non-pertur-
bation methods are used here, one can not get convergent series solution valid in the whole upper quarter plane 0 6 x < þ1
and 0 6 y < þ1.

It is important to give accurate local coefficient of skin friction of non-similarity flows, which is related to fggðn;0Þ via (21).
When �h ¼ �1=2, our 15th-order HAM approximation reads



Fig. 1. Curves of the 24th-order approximation of fggðn; 0Þ versus �h in Case A; solid line: n ¼ 1=4; dashed line: n ¼ 1=2; dashed-dotted line: n ¼ 3=4; dash-
dot-dotted line: n ¼ 1.

Fig. 2. fggðn;0Þ in Case A by means of different values of �h. Solid line: 18th-order approximation when �h ¼ �1=2; circles: 24th-order approximation when
�h ¼ �1=2; dashed line: 24th-order approximation when �h ¼ �0:9; dash-dotted line: 24th-order approximation when �h ¼ �1.
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fggðn;0Þ ¼ �nþ 0:357142n2 þ 0:0745784n3 þ 0:0329563n4 þ 0:0187480n5 þ 0:0121641n6 þ 0:00856336n7

þ 0:00638095n8 þ 0:00468866n9 þ 0:0125286n10 � 0:108975n11 þ 0:729854n12 � 2:509780n13

þ 4:702786n14 � 4:475992n15 þ 1:690259n16; ð49Þ
which agrees well with the 30th-order approximations and is accurate in the whole region 0 6 n 6 1. Knowing the accurate
values of fggðn;0Þ, it is straightforward to calculate the local coefficient of skin friction by (21). It is found that Cf tends to
�2

ffiffiffi
m
p

=x as x! 0 and �0:8875
ffiffiffiffiffiffiffiffi
m=x

p
as x! þ1, respectively, as shown in Fig. 3. Besides, the boundary-layer thickness

dðxÞ of non-similarity flows tends to
ffiffiffi
m
p

as x! 0 and 1:61613
ffiffiffiffiffi
mx
p

as x! þ1, respectively, as shown in Fig. 4. Note that
the boundary-layer thickness of similarity flow is

ffiffiffi
m
p

in case of Uw ¼ x and 1:61613
ffiffiffiffiffi
mx
p

in case of Uw ¼ 1, respectively.
So, according to our series solution, we have



Fig. 3. The local coefficient of skin friction Cf ðxÞ=
ffiffiffi
m
p

of non-similarity flows in case of Uw ¼ x=ð1þ xÞ. Solid-line: 30th-order HAM result; symbols: 20th-
order HAM result; dashed-line: Cf ðxÞ ¼ �0:8875

ffiffiffiffiffiffiffiffi
m=x

p
; dash-dotted line: Cf ðxÞ ¼ �2

ffiffiffi
m
p

=x.

Fig. 4. The boundary-layer thickness dðxÞ=
ffiffiffi
m
p

of non-similarity flows in case of Uw ¼ x=ð1þ xÞ. Solid-line: 30th-order HAM result; symbols: 20th-order
HAM result; dashed-line: dðxÞ ¼ 1:61613

ffiffiffiffiffi
mx
p

; dash-dotted line: dðxÞ ¼
ffiffiffi
m
p

.
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CfðxÞ ! �2
ffiffiffi
m
p

=x; dðxÞ !
ffiffiffi
m
p

as x! 0
and
CfðxÞ ! �0:8875
ffiffiffiffiffiffiffiffi
m=x

p
; dðxÞ ! 1:61613

ffiffiffiffiffi
mx
p

as x! þ1;
respectively. Thus, the non-similarity flows in the region x! 0 and +1 are very close to the similarity ones in case of Uw ¼ x
and 1, respectively. However, the flows in other regions are non-similar, as shown in Figs. 3 and 4.

3.2. Example 2: Uw ¼ x=ð1þ xÞ � 0:5x2=ð1þ xÞ2

In this case, Uw ! x as x! 0, and Uw ! 1=2 as x! þ1, respectively. Physically, the flows near x ¼ 0 should be close to
the similarity ones with Uw ¼ x, and besides, the flows as x! þ1 should be close to the similarity ones with Uw ¼ 1=2,
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respectively. For similarity flows with Uw ¼ x and 1/2, the similarity variables are y=
ffiffiffi
m
p

and y=
ffiffiffiffiffi
mx
p

, respectively. Therefore,
according to the definition (15) of the variable g, we choose
Fig. 5.
symbol
rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
;

which tends to y=
ffiffiffi
m
p

as x! 0, and to y=
ffiffiffiffiffi
mx
p

as x! þ1, respectively. Similarly, we define
n ¼ CðxÞ ¼ x
1þ x

;

which gives
Uw ¼ n; r1ðnÞ ¼
1
2
; r2ðnÞ ¼ 1� n:
Note that rðxÞ and CðxÞ are the same as those defined in Example 1.
Similarly, the corresponding series solutions fggðn;0Þ is a power function of �h that influences the convergence of the solu-

tion series. In a similar way, by plotting the curve fggðn;0Þ � �h for different values of n 2 ½0;1�, it is found that the series
fggðn;0Þ converges in the whole region n 2 ½0;1� when �h ¼ �1=2. Furthermore, it is found that, when �h ¼ �1=2, the series
of f ðn;gÞ is also convergent in the whole region n 2 ½0;1� and 0 6 g < þ1. Our convergent series solution gives
Cf ðxÞ ! �2
ffiffiffi
m
p

=x; dðxÞ !
ffiffiffi
m
p

as x! 0
and
Cf ðxÞ ! �1:2551
ffiffiffiffiffiffiffiffi
m=x

p
; dðxÞ ! 2:28537

ffiffiffiffiffi
mx
p

as x! þ1:
Note that, for similarity flows, it holds
Cf ðxÞ ¼ �2
ffiffiffi
m
p

=x; dðxÞ ¼
ffiffiffi
m
p

; when Uw ¼ x ð50Þ
and
Cf ðxÞ ¼ �1:2551
ffiffiffiffiffiffiffiffi
m=x

p
; dðxÞ ¼ 2:28537

ffiffiffiffiffi
mx
p

; when Uw ¼ 1=2: ð51Þ
Thus, the non-similarity flows in the region x! 0 and +1 are very close to the similarity ones in case of Uw ¼ x and 1/2,
respectively. However, the flows in the region 0:1 < x < 100 are non-similar, as shown in Figs. 5 and 6.

The above two examples illustrate the validity of our analytic approach. Note that the two examples uses the same trans-
formation n ¼ CðxÞ ¼ x=ð1þ xÞ. However, it should be emphasized that, if CðxÞ ¼ x, then n ¼ x and UwðnÞ ¼ UwðxÞ. So, our ap-
proach described in Section 2 is valid for any sheet stretching velocity UwðxÞ in general.
The local coefficient of skin friction Cf ðxÞ=
ffiffiffi
m
p

of non-similarity flows in case of Uw ¼ x=ð1þ xÞ � 0:5x2=ð1þ xÞ2. Solid-line: 30th-order HAM result;
s: 20th-order HAM result; dashed-line: Cf ðxÞ ¼ �1:2551

ffiffiffiffiffiffiffiffi
m=x

p
; dash-dotted line: Cf ðxÞ ¼ �2

ffiffiffi
m
p

=x.



Fig. 6. The boundary-layer thickness dðxÞ=
ffiffiffi
m
p

of non-similarity flows in case of Uw ¼ x=ð1þ xÞ � 0:5x2=ð1þ xÞ2. Solid-line: 30th-order HAM result; symbols:
20th-order HAM result; dashed-line: dðxÞ ¼ 2:28537

ffiffiffiffiffi
mx
p

; dash-dotted line: dðxÞ ¼
ffiffiffi
m
p

.
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4. An approximate formula of skin friction

For the similarity flows in case of Uw ¼ axk, we have from (11) that
Table 2
The coe

k

0
1/10
1/5
1/4
1/3
1/2
3/4
1
3/2
2
5/2
3
4
5
10
CfðxÞ ¼ kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðzÞdz

s
; ð52Þ
where kf is only dependent upon k. For example, kf ¼ �1:4142 when Uw ¼ ax, and kf ¼ �0:8875 when Uw ¼ a, as listed in
Table 2.

As mentioned above, the two non-similarity flows tend to the similarity ones in case of Uw ¼ x (as x! 0) and
Uw ¼ constant (as x! þ1), respectively. Considering the fact that the similarity flows are special cases of non-similarity
ones, it is straightforward to assume that the above formula is still a good approximation for non-similarity flows if one re-
gards kf as a function of x, i.e.,
CfðxÞ � kf ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR x
0 UwðzÞdz

s
; ð53Þ
where the coefficient kf ðxÞ is dependent upon UwðxÞ. For the two examples considered in this paper, we have
fficients kf for similarity flows in case of Uw ¼ axk

kf

�0.8875
�0.9983
�1.0845
�1.1208
�1.1737
�1.2580
�1.3491
�1.4142
�1.5013
�1.5571
�1.5958
�1.6244
�1.6636
�1.6893
�1.7464



Fig. 7.
formula
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kf ðxÞ ! �1:414 as x! 0
and
kf ðxÞ ! �0:8875 as x! þ1;
respectively. The above results give a line function kf of n ¼ x=ð1þ xÞ, i.e.,
kf ðxÞ ¼ �1:414þ 0:5265x
1þ x

: ð54Þ
Thus, for the two examples considered in this paper, we have
Cf ðxÞ � �1:414þ 0:5265x
1þ x

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðzÞdz

s
; ð55Þ
where
Z x

0
UwðzÞdz ¼ x� lnð1þ xÞ for Example 1
and
 Z x

0
UwðzÞdz ¼ x2

2ð1þ xÞ for Example 2:
It is interesting that, for two considered examples, the formula (55) gives rather good approximations of CfðxÞ in the whole
region 0 < x < þ1, as shown in Figs. 7 and 8.

The above approach can be generalized. Assume that, as x! 0, a non-similarity flow over a stretching sheet tends to a
similarity flow whose skin friction is given by
Cf ðxÞ ¼ kL
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðzÞdz

s
; ð56Þ
and as x! þ1, it tends to the similarity ones whose skin friction is given by
Cf ðxÞ ¼ kR
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðzÞdz

s
: ð57Þ
Then, the local coefficient of skin friction of the non-similarity flow on the whole sheet 0 < x < þ1 is approximately given
by
Comparison of the approximate formula (55) with the exact result of Cf ðxÞ in case of Uw ¼ x=ð1þ xÞ. Solid-line: 30th-order HAM result; symbols:
(55).



Fig. 8. Comparison of the approximate formula (55) with the exact result of Cf ðxÞ in case of Uw ¼ x=ð1þ xÞ � 0:5x2=ð1þ xÞ2. Solid-line: 30th-order HAM
result; symbols: formula (55).
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CfðxÞ � kL
f þ ðk

R
f � kL

f Þ
x

1þ x

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR x

0 UwðzÞdz

s
: ð58Þ
The coefficient kf of similarity flows in case of Uw ¼ axk is listed in Table 2. Using the formula (58) and Table 2, we can give
good approximation of local coefficient of skin friction of non-similarity boundary-layer flows over a stretching sheet.

5. Discussions and conclusions

A analytic technique for strongly non-linear problems, namely the homotopy analysis method, is applied to propose a gen-
eral approach to get convergent series solution of non-similarity boundary-layer flows. Without any assumptions of small/
large quantities, the system of the non-linear partial differential equation with variable coefficients is transferred into an infi-
nite number of linear ordinary differential equations with constant coefficients. Besides, an auxiliary artificial parameter is used
to ensure the convergence of the series solution. To show the validity of this approach, two typical non-similarity flows are
investigated. Different from previous analytic results, our series solutions are convergent and valid for all physical variables
in the whole domain of flows. Furthermore, the relationship between the non-similarity and similarity boundary-layer flows
is studied. It is found that, for the considered two non-similarity boundary-layer flows, the so-called local similarity exists only
near x ¼ 0 and as x! þ1. Using this kind of relationship, one approximate formula of the local coefficient of skin friction for
non-similarity flows is given, which agrees with the convergent series solutions for all physical parameters and variables.

Note that the original non-linear PDE (19) contains derivatives with respect to both g and n. However, we choose an aux-
iliary linear operator (45) which only contains the derivatives with respect to g. Mathematically, this is mainly because the
homotopy analysis method provides us great freedom to choose the auxiliary linear operator. More importantly, it also pro-
vides us a simple way to ensure the convergence of solution series by means of choosing a proper value of the convergence-
control parameter �h: the freedom on the choice of the auxiliary linear operator has no meanings if one cannot ensure the
convergence of solution series. It is interesting that Liao and Pop [43] used the same auxiliary linear operator to solve sim-
ilarity boundary-layer flows. Thus, in the frame of the homotopy analysis method, the non-similarity boundary-layer flows
can be solved in a similar way like similarity boundary-layer flows. Physically, it is mainly because the boundary-layer flow
exists: the velocity variation across the flow direction is much larger than that in the flow direction. Thus, one can apply this
analytic approach to solve different types of non-similarity boundary-layer flows in a similar way.

From mathematical point of view, this analytic approach is even more general in principle and can be applied to solve
different types of non-linear PDEs (or ODEs) with variable coefficients in science and engineering.
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