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Chaos: A bridge from microscopic uncertainty to macroscopic randomness
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a b s t r a c t

It is traditionally believed that the macroscopic randomness has nothing to do with the
micro-level uncertainty. Besides, the sensitive dependence on initial condition (SDIC) of
Lorenz chaos has never been considered together with the so-called continuum-assumption
of fluid (on which Lorenz equations are based), from physical and statistic viewpoints. A
very fine numerical technique [6] with negligible truncation and round-off errors, called
here the ‘‘clean numerical simulation’’ (CNS), is applied to investigate the propagation of
the micro-level unavoidable uncertain fluctuation (caused by the continuum-assumption
of fluid) of initial conditions for Lorenz equation with chaotic solutions. Our statistic anal-
ysis based on CNS computation of 10,000 samples shows that, due to the SDIC, the uncer-
tainty of the micro-level statistic fluctuation of initial conditions transfers into the
macroscopic randomness of chaos. This suggests that chaos might be a bridge from
micro-level uncertainty to macroscopic randomness, and thus would be an origin of mac-
roscopic randomness. We reveal in this article that, due to the SDIC of chaos and the inher-
ent uncertainty of initial data, accurate long-term prediction of chaotic solution is not only
impossible in mathematics but also has no physical meanings. This might provide us a new,
different viewpoint to deepen and enrich our understandings about the SDIC of chaos.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction: A paradox arising from Lorenz chaos

Nowadays, it is a common belief [2,3,5,12–14,16] of scientific society that some ‘‘deterministic’’ dynamic systems have
chaotic behaviors: their solutions are exponentially sensitive to initial conditions so that accurate long-term prediction of
chaotic solution is impossible. Here, the deterministic means that the evolution of solutions is fully determined by initial
conditions without random or uncertain elements involved. Such kind of behaviors is called ‘‘deterministic chaos’’ [5], be-
cause ‘‘the deterministic nature of these systems does not make them predictable’’ [16].

Such kind of non-periodic solutions was first pointed out by Poincaré [9] in 1880s for the famous three-body problem. In
1962 Saltzman [11] found ‘‘oscillatory, overstable cellular motions’’ and ‘‘consequently an alternating value of the heat trans-
port about a time-mean value’’ for a free convection flow with very large Rayleigh number. It is a pity that Saltzman [11] paid
main attentions on the stable solutions for Rayleigh number smaller than 10. Fortunately, this ‘‘oscillatory, overstable’’ non-
periodic solutions of the free convection flow was further studied in details by Lorenz [7] in 1963 for the weather prediction,
governed by the so-called Lorenz equation

_x ¼ rðy� xÞ; ð1Þ
_y ¼ Rx� y� xz; ð2Þ
_z ¼ xyþ bz; ð3Þ
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where r, R and b are physical parameters, the dot denotes the differentiation with respect to the time. Although the Lorenz
equation is much simpler than those used by Saltzman [11], its solution also becomes ‘‘oscillatory, overstable’’ for large Ray-
leigh number. Especially, using a digit computer and data in 6-digit precision, Lorenz [7] found that small changes in initial
conditions leaded to great difference in long-term prediction, called today the ‘‘butterfly effect’’. Based on the ‘‘butterfly ef-
fect’’, Lorenz [7] made a correct conclusion that long-term weather prediction is impossible, although the Lorenz equation is
only a very simple approximation model of the exact Navier–Stokes equations.

All numerical methods have the so-called truncation and round-off error, more or less. Due to the so-called ‘‘butterfly ef-
fect’’, all traditional numerical simulations of chaos are mixed with such kind of ‘‘numerical noise’’. Unfortunately, as pointed
out by Lorenz [8] in 2006, different traditional numerical schemes may lead to not only the uncertainty in prediction but also
fundamentally different regimes of the solution. Thus, the traditional numerical simulations of chaos are not ‘‘clean’’ so that
some of our understandings about chaos based on these impure numerical results might be questionable.

In order to gain reliable chaotic solutions in a long enough time interval, Liao [6] developed a fine numerical technique
with extremely high precision, called here the ‘‘clean numerical simulation’’ (CNS). Using the computer algebra system
Mathematica with the 400th-order Taylor expansion for continuous functions and data in accuracy of 800-digit precision,
Liao [6] gained, for the first time, ‘‘clean’’ numerical results of chaotic solution of Lorenz equation (in a special case
r = 10, R = 28, b = �8/3) in a long time interval 0 6 t 6 1000 Lorenz time unit (LTU) with negligible truncation and
round-off error. It was found by Liao [6] that, to gain a reliable ‘‘clean’’ chaotic solution of Lorenz equation in 0 6 t 6 Tc,
the initial conditions must be at least in the accuracy of 10�2Tc=5. Thus, when Tc = 1000 LTU, the initial condition must be
in the accuracy of 400-digit precision at least. Currently, Liao’s ‘‘clean’’ chaotic solution [6] of Lorenz equation is confirmed
by Wang et al. [15], who used parallel computation with the multiple precision (MP) library: they gained reliable chaotic
solution up to 2500 LTU by means of the 1000th-order Taylor expansion and data in 2100-digit precision, and their result
agrees well with Liao’s one [6] in 0 6 t 6 1000 LTU. Their excellent work verified the validity of the ‘‘clean numerical
simulation’’ (CNS) proposed by Liao [6]. These reliable ‘‘clean’’ chaotic solutions and especially the CNS provide us a powerful
tool to investigate the essence of SDIC and the ‘‘butterfly effect’’ from the physical and statistic points of view, as shown
below.

Since Lorenz [7] introduced the concept of SDIC of chaos, its meanings has been discussed and investigated in many
articles and books, mostly from the viewpoints of mathematics, logic and philosophy, but hardly from physical viewpoints.
This might be mainly because most models of chaos are too simple to accurately describe the complicated physical phenom-
ena. So, to deepen our understandings about the SDIC of chaos, it is valuable to study it from the physical viewpoints.

Lorenz equation [7] was originally derived from the Navier–Stokes (N–S) equation describing phenomena of fluid mo-
tions. The N–S equations are based on such an assumption that the fluid is a continuum, which is infinitely divisible and
not composed of particles such as atoms and molecules. Let us consider the uniform laminar flow of air with the velocity
1 (m/s) at the temperature T = 0 �C and the standard pressure. In this case, there are about 2.687 � 1025 molecules in a cube
of fluid. This is a hugh number so that the continuum-assumption of fluid is mostly satisfied in practice. Assume that all
molecules of a cube of fluid have the same velocity, except one which has a tiny velocity fluctuation 10�4 m/s. Then, the
averaged velocity fluctuation of a cube of fluid reads 3.722 � 10�30 m/s. Such micro-level velocity fluctuation of fluid should
be neglected under the continuum-assumption. In other words, in the frame of the continuum-assumption, it has no physical
meanings to consider the observable influence of such a tiny velocity fluctuation, from physical point of view!

However, Liao’s CNS computation [6] in the accuracy of 800-digit precision indicates that, mathematically, to gain reliable
chaotic solution in 0 6 T 6 1000 LTU, the fluctuation of initial conditions must be less than 400-digit precision at least. Note
that the number 10�400 is much smaller than 3.722 � 10�30 that is a minimum of the averaged velocity fluctuation of fluid!
Thus, as mentioned above, from physical point of view, such a tiny velocity fluctuation (in the level of 10�400) has no physical
meanings at all under the continuum-assumption that is a base of Lorenz equation! Therefore, a paradox arises: according to
the continuum-assumption, the tiny velocity fluctuation in the level of 10�30 should have no observable influence on the cha-
otic solution of Lorenz equation; on the other hand, the SDIC and ‘‘butterfly effect’’ indicate that the influence of a tiny veloc-
ity fluctuation even in the level of 10�400 must be considered! This is certainly a paradox in logic!

In history, many paradoxes first revealed the restrictions of some well-established theories and then greatly promoted
their developments. What is the essence of this paradox from the viewpoint of physics? What can we learn from it?

2. From micro-level uncertainty to macroscopic randomness

Without loss of generality, let us consider the Lorenz equation with chaotic solution in case of R = 28, b = �8/3 and r = 10.
Assume that the observable values of initial condition

x0 ¼ �79=5; y0 ¼ �437=25; z0 ¼ 891=25

are given exactly. However, due to the continuum-assumption of fluid, the initial conditions involve the uncertainty: the sta-
tistic fluctuations of velocity and temperature are inherent and unavoidable in essence, although their absolute values are
often much smaller than those of the observable values of initial condition. According to the central limit theorem in
probability theory, we assume that the fluctuations of velocity and temperature are in the normal distribution with
zero mean and a micro-level deviation r0, such as r0 = 10�30 used in this article. Thus, the entire initial conditions
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xð0Þ ¼ x0 þ ~x0; yð0Þ ¼ y0 þ ~y0 and zð0Þ ¼ z0 þ ~z0 involve random, where ~x0; ~y0; ~z0 are random variables in the normal distri-
bution with zero mean and deviation r0, i.e.

h~x0i ¼ h~y0i ¼ h~z0i ¼ 0; ~x2
0

� �
¼ ~y2

0

� �
¼ ~z2

0

� �
¼ r0:

For each random initial condition, the corresponding ‘‘clean’’ chaotic solution is gained by means of the CNS [6] with the 60-
order Taylor expansion and data in the accuracy of 120-digit precision. For details, please refer to Liao [6]. According to Liao’s
work [6], both of the truncation and round-off error are negligible in 0 6 t < 180 LTU. Thus, the numerical results are ‘‘clean’’
at least in 0 6 t 6 150 LTU, i.e. without any observable influence by numerical noise. Note that, although the standard devi-
ation r0 = 10�30 of the uncertain terms ~x0; ~y0; ~z0 of initial condition is much smaller than the observable values x0, y0, z0, it is
hugh compared to 10�120: the truncation and round-off errors of the numerical simulations gained by the 60th-order Taylor
formula and the data in accuracy of 120-digit precision are much smaller than the deviation 10�30 and thus are negligible in
0 6 t < 180 LTU. In this way, we can accurately investigate, for the first time, the influence of the micro-level statistic fluctu-
ation of initial conditions to chaotic solutions, and especially the propagation of uncertainty from the micro-level statistic
fluctuation of initial conditions to macroscopic randomness of chaos.

Let hx(t)i, hy(t)i, hz(t)i and rx(t), ry(t), rz(t) denote the sample mean and unbiased estimate of standard deviation of x(t),
y(t), z(t), respectively, where N = 104 is the number of samples gained by the CNS. Define the so-called uncertainty intensity

�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½rxðtÞ�2 þ ½ryðtÞ�2 þ ½rzðtÞ�2

hxðtÞi2 þ hyðtÞi2 þ hzðtÞi2

s
: ð4Þ

It is found that there exists such a time interval t 2 [0,Td] with Td � 75, in which �(t) is so small that one can accurately
predict the behavior of the dynamic system, but beyond which the uncertainty intensity increases greatly, as shown in Fig. 1.
Thus, using the result at any a point t 2 (0,Td) as the initial condition and setting t = �t, we can gain the given observable val-
ues x0, y0, z0 of initial conditions in a high-level of accuracy, meaning that the dynamic system looks like deterministic in
0 6 t 6 Td and that the influence of the uncertain statistic fluctuation of initial condition is negligible. But, beyond it, the solu-
tions become rather sensitive to the uncertain statistic fluctuation (in the level of 10�30) of initial condition and look like
random, say, the micro-level uncertain statistic fluctuation in initial condition transfers into the observable macroscopic ran-
domness. So, Td is an important time scale for Lorenz chaos.

As shown in Fig. 1, there exists the time Ts with Ts � 120 LTU, beyond which the cumulative distribution functions (CDF)
of x(t), y(t), z(t) and so on are approximately stationary, i.e. almost independent of the time. Besides, these CDFs are indepen-
dent of the observable values x0, y0, z0 of initial conditions, meaning that all observable information of initial conditions are
lost completely. In other words, when t > Td, the asymmetry of time seems to break down so that the time has a one-way
direction, i.e. the arrow of time. It suggests that, statistically, the chaotic Lorenz system might have two completely different
dynamic behaviors before and after Td: it looks like ‘‘deterministic’’ without time’s arrow when t 6 Td, but thereafter rapidly
becomes random with the arrow of time. This strongly suggests that chaos might be a bridge from the micro-level uncer-
tainty to macroscopic randomness, and thus might be an origin of macroscopic randomness and the time’s arrow. This pro-
vides us a new, different viewpoint to enrich and deepen our understandings about the SDIC of chaos.
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Fig. 1. The uncertainty intensity �(t) in case of the fluctuation of initial conditions in the normal distribution with zero mean and micro-level deviation
r0 = 10�30.
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When Td < t < Ts, the CDFs of x(t), y(t), z(t), their sample means and unbiased estimates of standard deviation are time-
dependent, and evolve to the approximately stationary ones for t P Ts. This process is called the transition from the deter-
ministic to randomness of chaos.

Write x0 = x � hxi, y0 = y � hyi and z0 = z � hzi. It is found that the CDFs of the fluctuations x0, y0, z0 are time-dependent when
t < Ts and become stationary when t > Ts. When t > Td, the CDF of x0 is different from the normal distribution with the standard
deviation hx02i, so are the CDFs of y0 and z0, as shown in Fig. 2. It is also found that Td decreases exponentially with respect to
r0, the standard deviation of the tiny uncertain variables ~x0; ~y0; ~z0 of the initial conditions. Besides, the stationary CDFs of x0,
y0, z0 are independent of the CDFs of ~x0; ~y0; ~z0. In addition, more samples are needed to gain accurate mean of the high cor-
relations of x0, y0, z0, such as hx0z0i, hy0z0i and especially hx0z0z0i, hx0y0y0i, hy0y0z0i, hy0z0z0i and hx0y0z0i, since the higher correlations
have the larger standard derivations: this shows the difficulty to propose an accurate model for the mean hxi, hyi, hzi by
means of these higher correlations. This also explains why it is so difficult to propose a satisfied turbulence model valid
for all kinds of turbulent flows, since Lorenz equation is a simplified model from Navier–Stokes equations. Note that, one
can directly obtain all of these correlations from the Lorenz equation, as long as the number of samples are large enough.
In other words, no additional models for hxi, hyi, hzi are needed.

It is found that, given r0 = 10�30 in case of R = 28, b = �8/3 and r = 10, we gain exactly the same figure as shown in Fig. 1,
even if we use more accurate numerical results obtained by means of the CNS with the 120-order Taylor expansion and data
in the accuracy of 240-digit precision! Note that it has no physical meanings to use a micro-level deviation r0 of the initial
conditions smaller than 10�30, as pointed out in the section of introduction. Thus, for chaotic dynamic systems, the transfer
from micro-level uncertainty to macroscopic randomness seems unavoidable. In addition, it is fund that, in case of b = �8/3,
r = 10 and R 6 23.54 so that solutions are not chaotic, the micro-level uncertainty never transfers into the macroscopic level.
Therefore, the SDIC of chaos is the key to such kind of transfer.

3. Conclusion and discussion

In this article, the sensitive dependence on initial condition (SDIC) of Lorenz chaos is considered together, for the first
time, with the so-called continuum-assumption of fluid (on which Lorenz equations are based) from physical and statistic
viewpoints. The so-called ‘‘clean numerical simulation’’ (CNS) proposed by Liao [6] is used to investigate the propagation
of the micro-level unavoidable uncertain fluctuation (caused by the continuum-assumption of fluid) of initial conditions
with chaotic solutions of Lorenz equation. Our statistic analysis based on the CNS computation of 104 samples suggests that,
due to the SDIC, the uncertainty of the micro-level statistic fluctuation of initial conditions transfers into the macroscopic
randomness of chaos. This may deepen and enrich our understandings about the SDIC and chaos, from a different viewpoint
of physics.

The microscopic phenomena are essentially uncertain, although probability distributions are governed by deterministic
equations. However, it is traditionally believed that the micro-level uncertainty has no relationships with the macroscopic
randomness. But, our statistic analysis strongly suggests that the micro-level uncertainty might be an origin of the macro-
scopic randomness, and chaos might be a bridge between them. Although the above conclusion is based on Lorenz equation,
it has general meanings. First, we also investigated some other chaotic dynamic systems, and found the same transfer from
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Fig. 2. The CDF (solid line) of z0 at t = 80 LTU and t = 150 LTU, compared with the corresponding normal distribution (dashed line) with the zero mean and
the standard deviation hz02i.
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micro-level uncertainty to macroscopic randomness for all of them. Secondly, as pointed out by Saltzman [11], the solutions
of a dynamic system consist of seven nonlinear differential equations for the free convention (which is a more accurate mod-
el than Lorenz equation) are ‘‘oscillatory, overstable’’ (i.e. chaotic) for large enough Rayleigh number. In fact, Saltzman [11]
represented the solution of the original continuous differential equations as a sum of double-Fourier components, and
approximated the original problem by a set of nonlinear ordinary different equations with finite number of degree of free-
dom. Both of the Lorenz equation and the above mentioned system of seven equations are only special cases of it, corre-
sponding to three and seven degree of freedom. Obviously, the larger the degree of freedom, the more accurate the
model. It is found that, for large enough Rayleigh number, these dynamic systems given by Saltzman [11] with degree of
freedom not less than three are chaotic, so that the micro-level uncertainty transfers into macroscopic randomness for all
of them. Theoretically speaking, as the number of degree of freedom tends to infinity, this system becomes the original con-
tinuous differential equations. Thus, our conclusion about the transfer from micro-level uncertainty to macroscopic random-
ness has general meanings, although it is based on the Lorenz equation. This is similar to the Lorenz’s famous conclusion
‘‘long-term accurate prediction of weather is impossible’’ [7], which is based on the Lorenz equation, a very simple model
of the N–S equation, but is correct and has been widely accepted by the scientific community.

The similar transfer has been reported in some other fields. For example, as pointed out by Bai et al. [1], the disorder of
materials plays a fundamental role to the so-called sample-specific behavior of fracture, i.e. the macroscopic failure may be
quite different, sample to sample, under the same macroscopic condition, because the differentiation due to meso-scopic dis-
order may be greatly amplified and lead to largely different macroscopic effects. Xia et al. [17] studied the failure of disor-
dered materials by means of a stochastic slice sampling method with a nonlinear chain model, and found that ‘‘there is a
sensitive zone in the vicinity of the boundary between the globally stable (GS) and evolution-induced catastrophic (EIC) re-
gions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC’’. In other
words, the meso-scopic uncertainty of disordered materials transfers into the macroscopic randomness of failure. As men-
tioned by He et al. [4], the nonlinearity and multi-scale might play a fundamental role in it. So, ‘‘(stochastic) fluctuations are
important and must not be neglected’’ for the failure of disordered materials, as pointed out by Sahimi and Arbabi [10]. An-
other example is the evolution of the universe: the micro-level uncertainty at Big Bang, the inherent uncertainty of position
and velocity of stars, and the nonlinear property of gravity might be the origin of the macroscopic randomness of the
universe. All of these support our conclusion: the transfer from micro-level uncertainty to macroscopic randomness might
have meanings in general.

Traditionally, it is believed that the SDIC of chaos is the origin of the so-called ‘‘butter-fly effect’’: long-term prediction is
impossible due to the SDIC of chaos and the impossibility of getting exact initial data with precision of arbitrary degree. This
traditional idea implies that the initial data itself are exact inherently but our human-being cannot obtain the exact value.
However, as pointed out in this article, this traditional thought might be wrong: due to the continuum-assumption of fluid,
there exists the statistic fluctuation of the initial data of Lorenz equation, no matter whether we could precisely measure the
initial data or not. It should be emphasized that such kind of uncertainty is inherent: it has nothing to do with our ability. In
this article, it is revealed that, due to the SDIC and the inherent uncertainty of initial data, accurate long-term prediction of
chaotic solution is not only impossible in mathematics but also has no physical meanings. This provides us a new explanation
of the SDIC of chaos, from the physical and statistic points of view.

The micro-level uncertainty and the physical variables x, y, z of Lorenz equation are at different scales: the absolute value
of the former (at the level of 10�30) is much smaller than that of the latter (at the level of 1). Unfortunately, the truncation
and round-off errors (often at the level of 10�10) of most traditional numerical techniques for chaos are much larger than
such kind of micro-level uncertainty, so that the propagation of the micro-level uncertainty is completely lost in the numer-
ical noises. The CNS [6] provides us a way to accurately investigate such kind of problems with multiple scales, since the
numerical noises of the CNS are much smaller than the micro-level uncertainty.

Lorenz equation is a simplified model based on the N–S equations describing flows of fluid. Note that nearly all models of
turbulence are deterministic in essence: the micro-level uncertain statistic fluctuation of velocity caused by the continuum-
assumption of fluid has been neglected completely. Note also that the uncertainty intensity (4) is rather similar to the def-
inition of turbulence intensity. Since turbulence has a close relationship with chaos, it might be possible that the influence of
the micro-level statistic fluctuation of velocity and temperature should be considered: we even should carefully check the
theoretical foundation of turbulence and the direct numerical simulation (DNS), such as the continuum-assumption of fluid.
Besides, our very fine numerical simulations and related analysis reported in this article suggest that the randomness of tur-
bulence might come essentially from the micro-level uncertain statistic fluctuation of velocity and temperature: turbulence
is such a kind of flow of fluid that it is so unstable that the micro-level uncertainty transfers into macroscopic randomness.

Hopefully, this work stimulated by a paradox could provide us some new physical insights and mathematical ways to
deepen and enrich our understanding about chaos and turbulence.

Acknowledgements

Thanks to the reviewers for their valuable comments and discussions. The author would like to express his sincere thanks
to Prof. Y.L. Bai and Prof. M.F. Xia (Chinese Academy of Sciences), Prof. Z. Li (Peking University), Prof. H.R. Ma (Shanghai Jiao
Tong University) for their valuable discussions. This work is partly supported by State Key Lab of Ocean Engineering (Ap-
proval No. GKZD010053) and Natural Science Foundation of China (Approval No. 10872129).

2568 S. Liao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2564–2569

SJLIAO-A2010
Highlight

SJLIAO-A2010
Highlight

SJLIAO-A2010
Highlight



Author's personal copy

References

[1] Bai YL, Ke FJ, Xia MF. Deterministically stochastic behavior and sensitivity to initial configuration in damage fracture. Sci Bull 1994;39:892895. in
Chinese.

[2] Egolf DA, Melnikov V, Pesch W, Ecke RE. Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bènard convection. Nature 2000;404:733–5.
[3] Gaspard P, Briggs ME, Francis MK, Sengers JV, Gammon RW, Dorfman JR, et al. Experimental evidence for microscopic chaos. Nature 1998;394:865–8.
[4] He GW, Xia MF, Ke FJ, Bai YL. Multiple-scale coupled phenomena – challenge and opportunity. Progress Natural Sci 2004;14:121–4. in Chinese.
[5] Li TY, Yorke JA. Period three implies Chaos. Amer Math Monthly 1975;82:985–92.
[6] Liao SJ. On the reliability of computed chaotic solutions of non-linear differential equations. Tellus-A 2009;61:550–64.
[7] Lorenz EN. Deterministic non-periodic flow. J Atmos Sci 1963;20:130–41.
[8] Lorenz EN. Computational periodicity as observed in a simple system. Tellus-A 2006;58:549–59.
[9] Poincaré JH. Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt. Acta Mathematica 1890;13:1–270.

[10] Sahimi M, Arbabi S. Mechanics of disordered solid. III. Fracture properties. Phys Rev B 1993;47:713–22.
[11] Saltzman B. Finite amplitude free convection as an initial value problem (I). J Atmos Sci 1962;19:329–41.
[12] Smith P. Explaining chaos. Cambridge: Cambridge University Press; 1998.
[13] Tsonis AA. Randomnicity: rules and randomness in realm of the infinite. Imperial College Press; 2008.
[14] Tucker W. The Lorenz attractor exists. C.R. Acad. Sci. 1999;328:1197–202.
[15] Wang PF, Li JP, Li Q. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference

solution of Lorenz equations. In: Numerical Algorithms, doi:10.1007/s11075-011-9481-6.
[16] Werndl C. What are the new implications of Chaos for unpredictability? Brit J Phil Sci 2009;60:195–220.
[17] Xia MF, Ke FJ, Wei YJ, Bai J, Bai YL. Evolution induced catastrophe in a nonlinear dynamical model of material failure. Nonlinear Dyn 2000;22:205–24.

S. Liao / Commun Nonlinear Sci Numer Simulat 17 (2012) 2564–2569 2569


