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In this paper, an optimal homotopy-analysis approach is described by means of the nonlin-
ear Blasius equation as an example. This optimal approach contains at most three conver-
gence-control parameters and is computationally rather efficient. A new kind of averaged
residual error is defined, which can be used to find the optimal convergence-control
parameters much more efficiently. It is found that all optimal homotopy-analysis
approaches greatly accelerate the convergence of series solution. And the optimal
approaches with one or two unknown convergence-control parameters are strongly sug-
gested. This optimal approach has general meanings and can be used to get fast convergent
series solutions of different types of equations with strong nonlinearity.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear equations are much more difficult to solve than linear ones, especially by means of analytic methods. Generally
speaking, there are two standards for a satisfactory analytic method of nonlinear equations:

(a) it can always give approximation expressions efficiently;
(b) it can guarantee that approximation expressions are accurate enough in the whole region of all physical parameters.

Using above two standards as a criterion, we can discuss the advantages and disadvantages of different analytic tech-
niques for nonlinear problems.

Perturbation techniques [1–6] are widely applied in science and engineering. Most perturbation techniques are based on
small (or large) physical parameters in governing equations or boundary conditions, called perturbation quantities. In gen-
eral, perturbation approximations are expressed in a series of perturbation quantities, and the original nonlinear equations
are replaced by an infinite number of linear (sometimes even nonlinear) sub-problems, which are completely determined by
the original governing equation and especially by the place where perturbation quantities appear. Perturbation methods are
simple, and easy to understand. Especially, based on small physical parameters, perturbation approximations often have
clear physical meanings. Unfortunately, not every nonlinear problem has such kind of perturbation quantity. Besides, even
if there exists a small parameter, the sub-problem might have no solutions, or might be rather complicated so that only a few
of the sub-problems can be solved. Thus, it is not guaranteed that one can always get perturbation approximations efficiently
. All rights reserved.
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for any a given nonlinear problem. More importantly, it is well-known that most perturbation approximations are valid only
for small physical parameters. In general, it is not guaranteed that a perturbation result is valid in the whole region of all
physical parameters. Thus, perturbation techniques do not satisfy not only the standard (a) but also the standard (b) men-
tioned at the beginning of this section.

To overcome the restrictions of perturbation techniques, some traditional nonperturbation methods are developed, such
as Lyapunov’s artificial small parameter method [7], the d-expansion method [8,9], Adomian decomposition method [10–15],
and so on. In principle, all of these methods are based on a so-called artificial parameter, and approximation solutions are
expanded into series of such kind of artificial parameter. This artificial parameter is often used in such a way that one
can get approximation solutions efficiently for a given nonlinear equation. Compared with perturbation techniques, this
is indeed a great progress. However, in theory, one can put the artificial small parameter in many different ways, but unfor-
tunately there are no theories to guide us how to put it in a better place so as to get a better approximation. For example,
Adomian decomposition method simply uses the linear operator dk

=dx in most cases, where k is the highest order of deriv-
ative of governing equations, and therefore it is rather easy to get solutions of the corresponding sub-problems by means of
integration k times with respect to x. However, such simple linear operator gives approximation solutions in power-series,
but unfortunately power-series has often a finite radius of convergence. Thus, Adomian decomposition method cannot en-
sure the convergence of its approximation series. Generally speaking, all traditional nonperturbation methods, such as
Lyapunov’s artificial small parameter method [7], the d-expansion method [8,9] and Adomian decomposition method
[10–15], can not guarantee the convergence of approximation series. So, these traditional nonperturbation methods satisfy
only the standard (a) but not the standard (b) mentioned before.

In 1992 Liao [16] took the lead to apply the homotopy [17], a basic concept in topology [18], to get analytic approxima-
tions of nonlinear differential equations. Liao [16] described the early form of the homotopy-analysis method (HAM) in 1992.
For a given nonlinear differential equation
1 Liao
misund

Please
Nonlin
N½uðxÞ� ¼ 0; x 2 X;
where N is a nonlinear operator and uðxÞ is a unknown function, Liao constructed a one-parameter family of equations in the
embedding parameter q 2 ½0; 1�, called the zeroth-order deformation equation
ð1� qÞL Uðx; qÞ � u0ðxÞ½ � þ qN½Uðx; qÞ� ¼ 0; x 2 X; q 2 ½0;1�; ð1Þ
where L is an auxiliary linear operator and u0ðxÞ is an initial guess. The homotopy provides us larger freedom to choose both
of the auxiliary linear operator L and the initial guess than the traditional nonperturbation methods mentioned before, as
pointed out later by Liao [19–21]. At q ¼ 0 and q ¼ 1, we have Uðx; 0Þ ¼ u0ðxÞ and Uðx; 1Þ ¼ uðxÞ, respectively. So, if the Taylor
series
Uðx; qÞ ¼ u0ðxÞ þ
Xþ1
n¼1

unðxÞqn ð2Þ
converges at q ¼ 1, we have the so-called homotopy-series solution
uðxÞ ¼ u0ðxÞ þ
Xþ1
n¼1

unðxÞ; ð3Þ
which must satisfy the original equation N½uðxÞ� ¼ 0, as proved by Liao [19,20] in general. Here, unðxÞ is governed by a linear
differential equation related to the auxiliary linear operator L and therefore is easy to solve, as long as we choose the aux-
iliary linear operator properly. In some cases, one can get convergent series of nonlinear differential equations by choosing
proper linear operator and initial guess. However, Liao [22,20] found that this early homotopy-analysis method can not al-
ways guarantee the convergence of approximation series. To overcome this restriction, Liao [22] in 1997 introduced such a
nonzero auxiliary parameter c0 to construct a two-parameter family of equations, i.e. the zeroth-order deformation
equation.1
ð1� qÞL Uðx; qÞ � u0ðxÞ½ � ¼ c0qN½Uðx; qÞ�; x 2 X; q 2 ½0;1�: ð4Þ
In this way, the homotopy-series solution (3) is not only dependent upon x but also the auxiliary parameter c0. It was found
[22,19,20] that the auxiliary parameter c0 can adjust and control the convergence region and rate of homotopy-series solu-
tions. In essence, the use of the auxiliary parameter c0 introduces us one more ‘‘artificial” degree of freedom, which has no
physical meaning but greatly improved the early homotopy-analysis method: it is the auxiliary parameter c0 which provides
us a convenient way to guarantee the convergence of homotopy-series solution [22,20]. Currently, Liang and Jeffrey [23]
used a simple example to illustrate the importance of the auxiliary parameter c0. Besides, Liao [24] revealed the relationship
between the homotopy-analysis method (in some special cases) and the famous Euler transform, which explains clearly why
the homotopy-analysis method can ensure the convergence of homotopy-series solution. Due to this reason, c0 was renamed
currently as the convergence-control parameter [25].
[22] originally used the symbol �h to denote the auxiliary parameter. But, �h is well-known as Planck’s constant in quantum mechanics. To avoid
erstanding, we suggest to use the symbol c0 to denote the ‘‘basic” convergence-control parameter.
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The use of the convergence-control parameter c0 is indeed a great progress. It indicates that more ‘‘artificial” degrees of free-
dom imply larger possibility to get better approximations by means of the homotopy-analysis method. Thus, Liao [19] in 1999
further introduced more ‘‘artificial” degrees of freedom by using the zeroth-order deformation equation in a more general form:
2 Aðq
better r

3 The

Please
Nonlin
½1� BðqÞ�L Uðx; qÞ � u0ðxÞ½ � ¼ c0AðqÞN½Uðx; qÞ�; x 2 X; q 2 ½0;1�; ð5Þ
where AðqÞ and BðqÞ are the so-called deformation functions2 satisfying
Að0Þ ¼ Bð0Þ ¼ 0; Að1Þ ¼ Bð1Þ ¼ 1; ð6Þ
whose Taylor series
AðqÞ ¼
Xþ1
m¼1

lmqm; BðqÞ ¼
Xþ1
m¼1

rmqm; ð7Þ
exist and are convergent for jqj 6 1. The zeroth-order deformation Eq. (5) can be further generalized, as shown by Liao
[20,26,25]. Obviously, there are an infinite number of the deformation functions as defined above. Thus, the approximation ser-
ies given by the HAM can contain so many ‘‘artificial” degrees of freedom that we have more ways to guarantee the convergence
of homotopy-series solution and to get better approximations. Note that unðxÞ is always governed by the same auxiliary linear
operatorL, and we have great freedom to chooseL in such a way that unðxÞ is easy to obtain and besides unðxÞ is expressed by a
set of proper base functions. More importantly, for given auxiliary linear operator L and initial guess, we can always get con-
vergent homotopy-series solution by choosing proper convergence-control parameter c0 and proper deformation functions
AðqÞand BðqÞ. In fact, the guarantee of the convergence of homotopy-series solutions provides us much larger freedom to choose
the auxiliary linear operator L and initial guess: with such kind of guarantee in the frame of the HAM, a nonlinear ODE with
variable coefficients can be transferred into a sequence of linear ODEs with constant coefficients [27], a nonlinear PDE can be
transferred into an infinite number of linear ODEs [28,29], several coupled nonlinear ODEs can be transferred into an infinite
number of linear decoupled ODEs [30], and even a 2nd-order nonlinear PDE can be replaced by an infinite number of 4th-order
linear PDEs [21]. Indeed, it is such kind of guarantee for convergence of series solutions, together with the freedom in choice of
the auxiliary linear operators, that greatly simplifies finding convergent series of nonlinear equations in the frame of the HAM,
as illustrated in above-mentioned articles [21,27–30]. On the other hand, without such kind of guarantee of convergence, we
have in practice no true freedom to choose the auxiliary linear operatorL, because the freedom to get a divergent series solution
has no meanings at all and is thus useless! For example, Liang and Jeffrey [23] pointed out that the series solution given by
means of the so-called ‘‘homotopy-perturbation method” [31] may be divergent at all points except the initial guess, and thus
has completely no scientific meanings. So, unlike perturbation techniques and the traditional nonperturbation methods men-
tioned above, the homotopy-analysis method satisfies both the standard (a) and (b). Besides, it is proved by Liao [20] that the
HAM logically contains the traditional nonperturbation methods such as Lyapunov’s artificial small parameter method [7], the
d-expansion method [8,9] and Adomian decomposition method [10–15]. Note that the homotopy-perturbation method [31] in
1999 is also a special case of the HAM, as proved by Sajid and Hayat [32] and pointed out by other researchers [23,33–36]. Thus,
the HAM is a rather general method for nonlinear problems, especially for those with strong nonlinearity. The HAM has been
widely applied to solve different types of nonlinear problems in science, finance and engineering [37,32,23,33,38–43,34,44–
48,35,36,49,50]. Especially, a few new solutions of some nonlinear problems have been found by means of the HAM [51–53],
which were neglected by other analytic methods and even by numerical techniques. All of these show the potential of the
HAM for strongly nonlinear problems.

How to find a proper convergence-control parameter c0 to get a convergent series solution, or even better, to get a faster con-
vergent one? A straight-forward way to check the convergence of a homotopy-series solution is to substitute it into original gov-
erning equations and boundary/initial conditions, and then to check the corresponding square residual errors integrated in the
whole region: the more quickly the residual error decays to zero, the faster the homotopy-series converges. However, when the
approximations contain unknown convergence-control parameters and/or other physical parameters, it is time-consuming to
calculate the square residual error at high-order of approximations. To avoid the time-consuming computation, Liao [22,20,19]
suggested to investigate the convergence of some special quantities, which often have important physical meanings. For exam-
ple, one can consider the convergence of u0ð0Þ and u00ð0Þ of a nonlinear differential equationN½uðxÞ� ¼ 0, if they are unknown. It
is found by Liao [22,20,19] that there often exists such a region Rc that any a value of c0 2 Rc gives a convergent series solution of
such kind of quantities. Besides, such a region can be found, although approximately, by plotting the curves of these unknown
quantities (mostly with important physical meanings) versus c0. For example, for a nonlinear differential equationN½uðxÞ� ¼ 0,
one may plot curves u0ð0Þ � c0; u00ð0Þ � c0 and so on. These curves are called ‘‘ c0-curves” or ‘‘curves for convergence-control
parameter”, 3 which have been successfully applied in many nonlinear problems [20].

However, it is a pity that curves for convergence-control parameter (i.e. c0-curves) can not tell us which value of c0 2 Rc

gives the fastest convergent series. In 2007, Yabushita et al. [37] applied the HAM to solve two coupled nonlinear ODEs, and
suggested the so-called ‘‘optimization method ” to find out two optimal convergence-control parameters by means of the
Þ and BðqÞ were called approaching function in previous articles about the homotopy-analysis method. Here, we suggest to use this new name which
eveals its relationship with the deformation equations.
c0-curve here was originally called the �h-curve, and Rc was originally denoted by R�h .
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minimum of the square residual error integrated in the whole region having physical meanings. In 2008, Marinca et al. [54]
combined c0 and AðqÞ in the zeroth-order deformation Eq. (5) as one function HðqÞ with Hð0Þ ¼ 0 but Hð1Þ – 1, and consid-
ered such a family of equations
Please
Nonlin
½1� q�L Uðx; qÞ � u0ðxÞ½ � ¼ HðqÞN½Uðx; qÞ�; q 2 ½0;1�; ð8Þ
where the Taylor series
HðqÞ ¼
Xþ1
n¼1

cnqn
converges at q ¼ 1. The above equation is a special case of (5), if one sets BðqÞ ¼ q and
HðqÞ ¼ c0AðqÞ ¼ c0

Xþ1
n¼1

lnqn; i:e: cn ¼ c0ln:
So, the so-called ‘‘homotopy-asymptotic method” [54–56] is also in the frame of the homotopy-analysis method. However,
Marinca et al. [54] suggested a very interesting approach, which has the advantage that Hð1Þ ¼ 1 is unnecessary so that one
has more freedom to choose the parameters cn. Marinca et al. [54] developed the so-called ‘‘optimal homotopy-asymptotic
method” by minimizing the square residual error: at the Mth-order of approximation, a set of nonlinear algebraic equations
about c1; c2; . . . ; cM is solved so as to find their optimal values. In theory, the more the convergence-control parameters are
used, the better approximation one should obtain by this optimal HAM approach. However, it is a pity that, with so many
unknown parameters, it is time-consuming to calculate the corresponding square residual errors, especially at high-order
of approximations for a complicated nonlinear problem. It is reported [57] that the optimal approach given by Marinca et
al. [54–56] often does not work in practice, especially at high-order approximations for complicated nonlinear problems.

In this paper, we propose a new kind of optimal homotopy-analysis approach. Our optimal homotopy-analysis approach
is also based on the generalized zeroth-order deformation equation (5). However, we use here special deformation functions
which are determined completely by only one characteristic parameter jc1j < 1 and jc2j < 1, respectively. In this way, there
exist at most only three convergence-control parameters c0; c1 and c2 at any order of approximations. Besides, a new defi-
nition of residual error is introduced so as to efficiently find out the unknown optimal convergence-control parameters
c0; c1 and c2. The basic ideas of the optimal homotopy-analysis approach is described in Section 2. Detailed comparisons
of different optimal approaches are shown in Section 3. A brief description of the optimal homotopy-analysis approach
for general nonlinear problems is given in 4, and some comments and suggestions are discussed in Section 5.

2. Basic ideas

For the sake of simplicity, let us consider the so-called Blasius boundary-layer flows in fluid mechanics, governed by the
nonlinear differential equation
f 000ðgÞ þ 1
2

f ðgÞf 00ðgÞ ¼ 0; f ð0Þ ¼ f 0ð0Þ ¼ 0; f 0ðþ1Þ ¼ 1; ð9Þ
where g is a similarity variable, f ðgÞ is related to the stream-function, and the prime denotes the derivative with respect to g,
respectively. Let k > 0 denote a kind of scale-parameter and introduce the transformation
f ðgÞ ¼ k�1FðnÞ; n ¼ kg: ð10Þ
Then, Eq. (9) becomes
F 000ðnÞ þ 1
2k2

� �
FðnÞF 00ðnÞ ¼ 0; Fð0Þ ¼ F 0ð0Þ ¼ 0; F 0ðþ1Þ ¼ 1; ð11Þ
where the prime denotes the derivative with respect to n. Following Liao [19], we use here k ¼ 4.
Due to the boundary condition F 0ðþ1Þ ¼ 1, one has F � n as n ! þ1. Besides, according to the physical meaning of

boundary-layer flows, the velocity tends to the main stream flow exponentially. Thus, FðnÞ should be expressed in the form
FðnÞ ¼ A0;0 þ nþ
Xþ1
m¼1

Xþ1
n¼0

Am;nn
n expð�mnÞ; ð12Þ
where Am;n is a constant. The above expression provides us the so-called solution expression of FðnÞ, which plays a key role in
the homotopy-analysis method, as shown later.

According to the solution expression (12) and the boundary conditions, we choose such an initial guess
F0ðnÞ ¼ n� 1þ e�n; ð13Þ
which satisfies all boundary-conditions. Besides, according to the solution expression (12), we choose such an auxiliary
linear operator
LF ¼ F 000 þ F 00; ð14Þ
cite this article in press as: Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun
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which possesses the property
Fig. 1.
c1 ¼ �1

Please
Nonlin
L½C0 þ C1nþ C2e�n� ¼ 0; ð15Þ
where the prime denotes the derivative with respect to n, and C0; C1 and C2 are integration coefficients. Furthermore, based
on the governing equation (11), we define such a nonlinear operator
N½F� ¼ F 000ðnÞ þ 1
2k2

� �
FðnÞF 00ðnÞ: ð16Þ
There are an infinite number of deformation functions satisfying the properties (6) and (7). For the sake of computation effi-
ciency, we use here the following one-parameter deformation functions:
A1ðq; c1Þ ¼
Xþ1
m¼1

lmðc1Þqm; B1ðq; c2Þ ¼
Xþ1
m¼1

rmðc2Þqm; ð17Þ
where jc1j < 1 and jc2j < 1 are constants, called the convergence-control parameter, and
l1ðc1Þ ¼ 1� c1; lmðc1Þ ¼ ð1� c1Þ cm�1
1 ; m > 1; ð18Þ

r1ðc1Þ ¼ 1� c2; rmðc2Þ ¼ ð1� c2Þ cm�1
2 ; m > 1: ð19Þ
The different values of c1 give different paths of A1ðq; c1Þ, as shown in Fig. 1.
Let q 2 ½0; 1� denote the embedding parameter, c0 – 0 an auxiliary parameter, called the convergence-control parameter,

and /ðn; qÞ a kind of continuous mapping of FðnÞ, respectively. We construct the so-called zeroth-order deformation equation
½1� B1ðq; c2Þ�L½/ðn; qÞ � F0ðnÞ� ¼ c0A1ðq; c1ÞN½/ðn; qÞ�; 0 6 n < þ1; q 2 ½0;1�; ð20Þ
subject to the boundary conditions
/ ¼ 0;
@/
@n
¼ 0; at n ¼ 0 ð21Þ
and
@/
@n
¼ 1; as n! þ1: ð22Þ
Note that A1ðq; c1Þ and B1ðq; c2Þ contain the convergence-control parameters c1 and c2, respectively. So, we have at most
three unknown convergence-control parameters c0; c1 and c2, which can be used to ensure the convergence of solutions ser-
ies, as shown later.
q

A 1
(q
;c
1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Deformation function A1ðq; c1Þ defined by (17) and (18). Solid line: c1 ¼ 3=4; Dashed line: c1 ¼ 1=2, Long-dashed line: c1 ¼ 0; Dash-dotted line:
=2; Dash-dot-dotted line: c1 ¼ �3=4.
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When q ¼ 0, according to the definition (14) of L and the definition (13) of F0ðnÞ, it is obvious that
Please
Nonlin
/ðn; 0Þ ¼ F0ðnÞ: ð23Þ
When q ¼ 1, according to the definition (6), the zeroth-order deformation equations (20)–(22) are equivalent to the original
Eq. (11), provided
/ðn; 1Þ ¼ FðnÞ: ð24Þ
Thus, as q increases from 0 to 1, the solution /ðn; qÞ varies (or deforms) continuously from the initial guess F0ðnÞ to the solu-
tion FðnÞ of Eq. (11). Obviously, /ðn; qÞ is determined by the auxiliary linear operator L, the initial guess F0ðnÞ, and the con-
vergence-control parameters c0; c1 and c2. Note that we have great freedom to choose all of them. Assuming that all of them
are so properly chosen that the Taylor series
/ðn; qÞ ¼ F0ðnÞ þ
Xþ1
k¼1

FkðnÞqk ð25Þ
exists and besides converges at q ¼ 1, we have using (24) the homotopy-series solution
FðnÞ ¼ F0ðnÞ þ
Xþ1
k¼1

FkðnÞ; ð26Þ
where
FmðnÞ ¼
1

m!

@m/ðn; qÞ
@qm

����
q¼0
:

Let G denote a function of q 2 ½0; 1� and define the so-called mth-order homotopy-derivative [25]:
Dm½G� ¼
1

m!

@mG
@qm

����
q¼0
: ð27Þ
Taking the above operator on both sides of the zeroth-order deformation equation (20) and the boundary conditions (21) and
(22), we have the mth-order deformation equation
L FmðnÞ �
Xm�1

k¼1

rm�kðc2ÞFkðnÞ
" #

¼ c0

Xm�1

k¼0

lm�kðc1ÞdkðnÞ; ð28Þ
subject to the boundary conditions
Fmð0Þ ¼ F 0mð0Þ ¼ 0; F 0mðþ1Þ ¼ 0; ð29Þ
where
dkðnÞ ¼ DkN½/ðn; qÞ� ¼ 1
k!

@kN½/ðn; qÞ�
@qk

�����
q¼0

¼ F 000k ðnÞ þ
1

2k2

� �Xk

j¼0

F 00j ðnÞFk�jðnÞ; ð30Þ
and the coefficients lkðc1Þ and rkðc2Þ are defined by (18) and (19), respectively. For details about the operator (27), please
refer to Liao [25].

Let F�mðnÞ denote a special solution of (28) and L�1 the inverse operator of L, respectively. We have
F�mðnÞ ¼
Xm�1

k¼1

rm�kðc2ÞFkðnÞ þ c0

Xm�1

k¼0

lm�kðc1ÞSkðnÞ; ð31Þ
where
SkðnÞ ¼L�1 dkðnÞ½ �: ð32Þ
The common solution reads
FmðnÞ ¼ F�mðnÞ þ C0 þ C1nþ C2e�n;
where the integral coefficients
C1 ¼ 0; C2 ¼
dF�m
dn

����
n¼0
; C0 ¼ �F�mð0Þ � C2;
are determined by the boundary conditions (29).
It should be emphasized that FmðnÞ contains at most three unknown convergence-control parameters c0; c1 and c2, which

determine the convergence region and rate of the homotopy-series solution (26). Obviously, if the convergence-control
cite this article in press as: Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun
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parameters c0; c1 and c2 are properly chosen, the homotopy-series solution (26) may converge fast. So, we should find out
the good enough values of c0; c1 and c2 so that the homotopy-series solution (26) converges fast enough.

In theory, at the mth-order of approximation, one can define the exact square residual error
Please
Nonlin
Dm ¼
Z þ1

0
N

Xm

i¼0

FiðnÞ
" # !2

dn: ð33Þ
Note that Dm contains at most three unknown convergence-control parameters c0; c1 and c2, even at very high order of
approximation. Obviously, the more quickly Dm decreases to zero, the faster the corresponding homotopy-series solution
converges. So, at the given order of approximation m, the corresponding optimal values of the convergence-control param-
eters c0; c1 and c2 are given by the minimum of Dm, corresponding to a set of three nonlinear algebraic equations
@Dm

@c0
¼ 0;

@Dm

@c1
¼ 0;

@Dm

@c2
¼ 0: ð34Þ
However, it is a pity that the exact square residual error Dm defined by (33) needs too much CPU time to calculate even if the
order of approximation is not very high, and thus is often useless in practice. To overcome this disadvantage, we will intro-
duce a more efficient definition of the residual error to replace (33), which will be described in the following section in
details.

3. Comparisons of different approaches

Note that we have at most three unknown convergence-control parameters c0; c1 and c2. In case of c1 ¼ c2 ¼ 0, one has
the plain deformation functions A1ðq; c1Þ ¼ B1ðq; c2Þ ¼ q, which was used by Liao [22] for Blasius problem and also by many
other users [37,32,23,33,38–43,34,44–48,35,36,49] of the HAM. Here, we will give optimal homotopy-analysis approaches
with different numbers of unknown convergence-control parameters, and compare them in details.

3.1. Optimal c0 in case of c1 ¼ c2 ¼ 0

In this case, only one convergence-parameter c0 is unknown. For given order of approximation M, the optimal value of c0

is given by the minimum of Dm, corresponding to a nonlinear algebraic equation
dDM

dc0
¼ 0:
The curves of DM versus c0 at different order of approximation M ¼ 6; 8 and 10 are shown in Fig. 2, which indicate that the
optimal value of c0 is about �3/2.

However, more and more CPU time is needed to calculate the exact residual error Dm, especially for large M, the order of
approximation. For example, even in case of c1 ¼ c2 ¼ 0, it needs 68.13 s, 272.7 s and 1089.5 s to calculate the corresponding
exact residual error (33) for M ¼ 6; 8 and 10, respectively. It is found that, when there are more than one unknown param-
eters, the CPU time increases exponentially so that the exact residual error (33) is often useless in practice. Thus, to greatly
decrease the CPU time, we use here the so-called averaged residual error defined by
Em ¼
1
K

XK

j¼0

N
Xm

k¼0

FkðjDxÞ
 !" #2

; ð35Þ
where Dx ¼ 10=K and K ¼ 20 for Blasius flow problem. The curves of the averaged residual error Em versus c0 indicate that
the optimal value of c0 is also about �3/2, as shown in Fig. 3. It is found that, as the order of approximation increases, the
optimal value of c0 given by the minimum of the averaged residual error (35) is more and more close to�3/2, as shown in
Table 1. Thus, the averaged residual error Em defined by (35) can give good enough approximation of the optimal conver-
gence-control parameter. However, the CPU time to get the averaged residual error Em is much less than that to calculate
the exact residual error Dm in case of m P 5: it takes only 0.30 s, 1.11 s and 1.58 s to get the optimal c0 of E6; E8 and E10,
respectively, i.e. only 0.44%, 0.41% and 0.15% CPU time when the exact definition (33) is used. Therefore, in the following part
of this article, we will use the averaged residual error (35) to find the optimal values of the unknown convergence-control
parameters. For the sake of impartial comparisons, E10 given by the 10th-order approximation is used in the whole paper to
search for the unknown optimal convergence-control parameters.

In case of c1 ¼ c2 ¼ 0 there is only one unknown convergence-control parameter c0, thus the optimal value of c0 is deter-
mined by the minimum of E10, corresponding to the nonlinear algebraic equation E010ðc0Þ ¼ 0. Using the symbolic computa-
tion software Mathematica, we directly employ the command Minimize to get the optimal convergence-control parameter
c0. According to Table 1, E10 has its minimum value at c0 ¼ �1:400. By means of c0 ¼ �7=5, the value of f 00ð0Þ converges much
faster to 0.3320573 than the corresponding homotopy-series solution given by Liao [19] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0, as
shown in Table 2, and the corresponding square averaged residual error

ffiffiffiffiffiffi
Em
p

decreases much more quickly, as shown in
Table 3. So, even the one-parameter optimal homotopy-analysis approach can give much better approximations.
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Fig. 3. Averaged residual error Em versus c0 in case of c1 ¼ c2 ¼ 0. Solid line: 10th-order approximation; Dashed line: 8th-order approximation; Dash-dotted
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Fig. 2. Exact residual error Dm versus c0 in case of c1 ¼ c2 ¼ 0. Solid line: 10th-order approximation; Dashed line: 8th-order approximation; Dash-dotted
line: 6th-order approximation.
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3.2. Optimal c1 ¼ c2 in case of c0 ¼ �1

In Section 3.1, we show that the optimal convergence-control parameter c0 ¼ �7=5 in case of c1 ¼ c2 ¼ 0 gives a homot-
opy-series solution which converges much faster than that given by Liao [19] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0. Here, we
investigate another one-parameter optimal approach in case of c0 ¼ �1 with the unknown c1 ¼ c2.
Please cite this article in press as: Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun
Nonlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2009.09.002
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Table 1
Optimal value of c0 in case of c1 ¼ c2 ¼ 0.

m, order of approximation Optimal value of c0 Minimum value of Em

6 �0.187 2.18 �10�3

8 �1.366 4.53 �10�5

10 �1.400 8.91 �10�6

12 �1.431 3.12 �10�6

14 �1.476 4.76 �10�7

16 �1.482 6.13 �10�8

18 �1.491 8.37 �10�9

20 �1.498 1.87 �10�9

Table 2
Comparison of f 00ð0Þ given by different approaches.

Order of
appr.

c1 ¼ 0; c2 ¼ 0;
c0 ¼ �1

c1 ¼ 0; c2 ¼ 0;
c0 ¼ �7=5

c1 ¼ �2=5; c2 ¼ �2=5;
c0 ¼ �1

c1 ¼ 0:187; c2 ¼ 0:187;
c0 ¼ �1:723

c1 ¼ 0:165; c2 ¼ 0:107;
c0 ¼ �1:791

5 0.2563899 0.2731356 0.2731356 0.2728099 0.3167887
10 0.3277556 0.3310852 0.3310852 0.3310700 0.3290419
15 0.3312560 0.3320500 0.3320500 0.3320498 0.3317650
20 0.3318513 0.3320453 0.3320453 0.3320456 0.3321357
25 0.3320037 0.3320520 0.3320520 0.3320520 0.3320844
30 0.3320403 0.3320564 0.3320564 0.3320564 0.3320580
35 0.3320519 0.3320572 0.3320572 0.3320572 0.3320559
40 0.3320554 0.3320573 0.3320573 0.3320573 0.3320570

Table 3
Comparison of the averaged residual error

ffiffiffiffiffiffi
Em
p

given by different approaches.

Order of appr. c1 ¼ 0; c2 ¼ 0;
c0 ¼ �1

c1 ¼ 0; c2 ¼ 0;
c0 ¼ �7=5

c1 ¼ �2=5; c2 ¼ �2=5;
c0 ¼ �1

c1 ¼ 0:187; c2 ¼ 0:187;
c0 ¼ �1:723

c1 ¼ 0:165; c2 ¼ 0:107;
c0 ¼ �1:791

5 6.03 � 10�3 1.10 � 10�2 1.10 � 10�2 1.10 � 10�2 1.22 � 10�2

10 1.62 � 10�3 6.68 � 10�4 6.68 � 10�4 6.68 � 10�4 3.56 � 10�4

15 5.13 � 10�4 1.32 � 10�4 1.32 � 10�4 1.32 � 10�4 1.27 � 10�4

20 1.87 � 10�4 1.43 � 10�5 1.43 � 10�5 1.42 � 10�5 1.45 � 10�5

25 5.05 � 10�5 3.44 � 10�6 3.44 � 10�6 3.43 � 10�6 1.02 � 10�6

30 1.06 � 10�5 6.32 � 10�7 6.32 � 10�7 6.27 � 10�7 2.66 � 10�7

35 3.43 � 10�6 6.15 � 10�8 6.15 � 10�8 6.07 � 10�8 5.42 � 10�8

40 1.44 � 10�6 2.90 � 10�9 2.90 � 10�9 2.86 � 10�9 1.41 � 10�8
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In this case, E10 has the minimum 8:91� 10�6 at the optimal value c1 ¼ c2 ¼ �0:400. It is found that the homotopy-
approximations given by c0 ¼ �1 and c1 ¼ c2 ¼ �2=5 converges much faster than those given by Liao [19] in case of
c0 ¼ �1 and c1 ¼ c2 ¼ 0, as shown in Tables 2 and 3. Besides, it is very interesting that the homotopy-approximations given
by c0 ¼ �1 and c1 ¼ c2 ¼ �2=5 are exactly the same as those given by c0 ¼ �7=5 and c1 ¼ c2 ¼ 0 at every order of approx-
imation! It is further found that the homotopy-approximations given by the following three cases:

(A) c0 ¼ �3=2; c1 ¼ c2 ¼ 0;
(B) c0 ¼ �1; c1 ¼ c2 ¼ �1=2;
(C) c0 ¼ �4=3; c1 ¼ c2 ¼ �1=8;

are also exactly the same at every order of approximation, and all of them converges much faster than the approximations
given by Liao [19] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0. This illustrates that the second one-parameter optimal homotopy-anal-
ysis approach is as good as the first one mentioned in Section 3.1.

3.3. Optimal c0 and c1 ¼ c2

Let us consider the optimal approach with the two unknown convergence-control parameters c0 and c1 in case of c2 ¼ c1.
The corresponding averaged residual error E10 is now a function of both c0 and c1, which has the minimum 8:91� 10�6 at the
optimal values c0 ¼ �1:723 and c1 ¼ c2 ¼ 0:187. The corresponding homotopy-approximations converges much faster than
those given by Liao [19] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0, as shown in Tables 2 and 3. Note that the square averaged residual
Please cite this article in press as: Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun
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error
ffiffiffiffiffiffi
Em
p

given by the two-parameter optimal homotopy-analysis approach decreases a little faster than that of the homot-
opy-approximations given by one-parameter optimal approaches in case of c0 ¼ �7=5; c1 ¼ c2 ¼ 0 or c0 ¼ 0; c1 ¼ c2 ¼
�2=5, although all of them give nearly the same f 00ð0Þ at the same order of approximation.

3.4. Optimal c0; c1 and c2 in case of c2 – c1

This gives a three-parameter optimal homotopy-analysis approach. The corresponding E10 is now a function of c0; c1 and
c2, which has the minimum 2:53� 10�6 at the optimal values c0 ¼ �1:791; c1 ¼ 0:165 and c2 ¼ 0:107. The corresponding
homotopy-series solution converges much faster than that given by Liao [19] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0, as shown
in Tables 2 and 3. However, the homotopy-approximations given by the three-parameter optimal homotopy-analysis ap-
proach are a little worse than those given by one-parameter optimal homotopy-analysis approach in case of
c0 ¼ �7=5; c1 ¼ c2 ¼ 0 and c0 ¼ 0; c1 ¼ c2 ¼ �2=5, and also by the two-parameter optimal homotopy-analysis approach
in case of c0 ¼ �1:723 and c1 ¼ c2 ¼ 0:187, as shown in Tables 2 and 3. This is mainly because the averaged residual error
Em defined by (35) is an approximation of the exact residual error Dm defined by (33) so that the corresponding optimal val-
ues of the convergence-control parameters are also approximate, too. The corresponding 20th-order homotopy-analysis
approximation of f 0ðgÞ agrees quite well with the numerical ones, as shown in Fig. 4. In fact, all optimal homotopy-analysis
approaches mentioned above give rather accurate result of f 0ðgÞ in the whole region 0 6 g < þ1.

Based on the above calculations for Blasius flow problem, we have the following conclusions:

(1) All optimal homotopy-analysis approaches can give much better approximations which converges much faster than
those without optimal convergence-control parameters.

(2) Two-parameter optimal homotopy-analysis approaches can often give better homotopy-analysis approximations than
one-parameter optimal approaches, although the modification might be not very obvious, as illustrated by the exam-
ple in this article.

(3) The homotopy-analysis approximations given by three-parameter optimal approaches might be not obviously better
than those given by one and two-parameter optimal homotopy-analysis approaches.

Thus, it is strongly suggested to use at first one or two-parameter optimal homotopy-analysis approaches, together with a
properly defined averaged residual error like (35).

3.5. Homotopy-Padé acceleration

The so-called homotopy-Padé technique [20] was proposed to accelerate the convergence of the homotopy-series solu-
tion. Its idea is simple: one first applied the traditional Padé technique to (25) so as to get ½m; m� Padé approximant with
η

f’
( η

)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Fig. 4. Comparison of analytic approximation of f 0ðgÞ with numerical ones. Symbols: numerical result; Solid line: 20th-order homotopy approximation
given by the three-parameter optimal approach in case of c0 ¼ �1:791; c1 ¼ 0:165 and c2 ¼ 0:107.

Please cite this article in press as: Liao S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun
Nonlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2009.09.002

http://dx.doi.org/10.1016/j.cnsns.2009.09.002


Table 4
Comparison of ½m; m� homotopy-Padé approximations of f 00ð0Þ given by different approaches.

m c1 ¼ 0; c2 ¼ 0;
c0 ¼ �1

c1 ¼ 0; c2 ¼ 0;
c0 ¼ �7=5

c1 ¼ �2=5; c2 ¼ �2=5;
c0 ¼ �1

c1 ¼ 0:187; c2 ¼ 0:187;
c0 ¼ �1:723

c1 ¼ 0:165; c2 ¼ 0:107;
c0 ¼ �1:791

2 0.4752626 0.4752626 0.4752626 0.4752626 0.3068023
4 0.3446753 0.3446753 0.3446753 0.3446753 0.3262952
6 0.3326957 0.3326957 0.3326957 0.3326957 0.3315596
8 0.3320548 0.3320548 0.3320548 0.3320548 0.3320060

10 0.3320495 0.3320495 0.3320495 0.3320495 0.3320405
12 0.3320565 0.3320565 0.3320565 0.3320565 0.3320578
14 0.3320573 0.3320573 0.3320573 0.3320573 0.3320573
16 0.3320573 0.3320573 0.3320573 0.3320573 0.3320573
18 0.3320573 0.3320573 0.3320573 0.3320573 0.3320573
20 0.3320573 0.3320573 0.3320573 0.3320573 0.3320573
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respect to the embedding parameter q, and then set q ¼ 1. It is found that the so-called homotopy-Padé technique can
greatly accelerate the convergence of homotopy-series solution in general, and besides the ½m; m� homotopy-Padé approx-
imations are often independent of the convergence-control parameter c0 in case of c1 ¼ c2 ¼ 0, as pointed out by Liao [20].

It is straightforward to apply the homotopy-Padé technique to accelerate the homotopy-series solution obtained by the
optimal homotopy-analysis approaches mentioned above. In case of three unknown convergence-control parameters c0; c1

and c2, the ½1; 1� homotopy-Padé approximation of f 00ð0Þ reads
Please
Nonlin
f 00ð0Þ � 1728ðc2 � c1Þ þ 53c0ðc1 � 1Þ
864ðc2 � c1Þ þ 877c0ðc1 � 1Þ : ð36Þ
It is found that the homotopy-Padé technique indeed greatly accelerates the convergence of f 00ð0Þ given by all optimal
homotopy-analysis approaches mentioned above, as shown in Table 4. Especially, it is very interesting that all homotopy-
Padé approximations of f 00ð0Þ in case of c1 ¼ c2 are the same, as shown in Table 4. Why? To explain it, we regard c0 and
c1 as unknown parameters in case of c2 ¼ c1, and calculate the 20th-order homotopy-analysis approximations by symbolic
computation. In a surprise, it is found that all ½m; m� homotopy-Padé approximations of f 00ð0Þ are independent of the three
convergence-control parameters c0; c1 and c2 in case of c1 ¼ c2. This is also clear from the ½1; 1� homotopy-Padé approxima-
tion (36) of f 00ð0Þ. It seems that the homotopy-Padé technique might give better approximations even than the above-men-
tioned optimal homotopy-analysis approaches. However, it is a pity that we can not give a mathematical proof in general
cases for this guess.

Note that, as shown in Table 4, the ½m; m� homotopy-Padé approximations of f 00ð0Þ given by the three-parameter optimal
homotopy-analysis approach in case of c0 ¼ �1:791; c1 ¼ 0:165 and c2 ¼ 0:107 are a little better than those given by other
one and two-parameter optimal approaches in case of c1 ¼ c2. And the homotopy-series solutions given by all optimal
homotopy-analysis approaches mentioned above converge to the same result f 00ð0Þ ¼ 0:3320573, which is more accurate
than the result f 00ð0Þ ¼ 0:33206 reported by Liao [22] in case of c0 ¼ �1 and c1 ¼ c2 ¼ 0.

4. The optimal approach in general cases

Note that the definition of the averaged residual error (35) and the above-mentioned optimal homotopy-analysis ap-
proaches have general meanings and thus can be easily applied to solve different types of equations with strong nonlinearity.
Here, we give a brief description in general cases.

For a general nonlinear differential/integral equation
N½uðr; tÞ� ¼ 0; ð37Þ
where uðr; tÞ is a unknown funciton, r and t denote respectively spatial and temporal independent variables, we can always
choose a proper initial guess u0ðr; tÞ and a proper auxiliary linear operator L to construct the so-called zeroth-order defor-
mation equation
1� Bn0 ðq; bÞ½ �L Uðr; t; qÞ � u0ðr; tÞ½ � ¼ c0Am0 ðq; aÞN Uðr; t; qÞ½ �; q 2 ½0;1�; ð38Þ
where Am0 ðq; aÞ is a deformation function with m0 (m0 P 0) unknown convergence-control parameters denotes by
c1; c2; . . . ; cm0 , and Bn0 ðq; bÞ is a deformation function with n0 (n0 P 0) unknown convergence-control parameters denoted
by cm0þ1; cm0þ2; . . . ; cm0þn0 , respectively. Here,
a ¼ c1; c2; � � � ; cm0f g; b ¼ cm0þ1; cm0þ2; . . . ; cm0þn0f g:
Write j ¼ m0 þ n0. Then, we have jþ 1 unknown convergence-control parameters c0; c1; . . . ; cj.
Assuming that the initial guess u0ðr; tÞ, the auxiliary linear operator L, and the jþ 1 convergence-control parameters

c0; c1; . . . ; cj are so properly chosen that the Taylor series
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Please
Nonlin
Uðr; t; qÞ ¼ u0ðr; tÞ þ
Xþ1
n¼1

unðr; tÞqn ð39Þ
converges at q ¼ 1, we have the homotopy-series solution
uðr; tÞ ¼ u0ðr; tÞ þ
Xþ1
n¼1

unðr; tÞ: ð40Þ
Substituting the series (39) into the zeroth-order deformation equation (38) and then equating the coefficients of the like-
power of the embedding parameter q, we have the high-order deformation equation.4
L umðr; tÞ �
Xm�1

k¼1

rm�kðbÞukðr; tÞ
" #

¼ c0

Xm�1

k¼0

lm�kðaÞdkðr; tÞ; ð41Þ
where
dkðr; tÞ ¼
1
k!

@k

@qk
N

Xþ1
n¼0

unðr; tÞqn

" # !�����
q¼0

ð42Þ
and lkðaÞ; rkðbÞ are coefficients of the Taylor series
Am0 ðq; aÞ ¼
Xþ1
k¼1

lkðaÞqk; Bn0 ðq; bÞ ¼
Xþ1
k¼1

rkðbÞqk: ð43Þ
The special solution u�mðr; tÞ of (41) is given by
u�mðr; tÞ ¼
Xm�1

k¼1

rm�kðbÞukðr; tÞ þ c0

Xm�1

k¼0

lm�kðaÞSkðr; tÞ; ð44Þ
where
Skðr; tÞ ¼L�1 dkðr; tÞ½ � ð45Þ
and L�1 is the inverse operator of L.
To avoid time-consuming computation for the exact square residual error, at the mth-order of approximation, we define a

kind of averaged residual error Em in a similar way to (35). Note that Em contains jþ 1 unknown convergence-control
parameters c0; c1; . . . ; cj, whose optimal values are given by the minimum of Em, corresponding to a set of jþ 1 nonlinear
algebraic equations
@Em

@cj
¼ 0; 0 6 j 6 j:
So, the above approach is called the ðjþ 1Þ-parameter optimal homotopy-analysis approach.
In general, the above-mentioned optimal homotopy-analysis approaches can greatly modify the convergence of homot-

opy-series solution. And the optimal homotopy-analysis approaches with one or two unknown convergence-control param-
eters are strongly suggested: an optimal approach with too many unknown convergence-control parameters are not efficient
computationally. Besides, the homotopy-Padé technique can be used to get even better approximations in most cases.

Note that the nonlinear operator N in (37) is rather general so that the above-mentioned optimal homotopy-analysis
approach can be employed to different types of equations with strong nonlinearity, such as ordinary/partial differential
equations, integral equations, differential-integral equations, time-delayed equations, and so on.

5. Discussions and conclusions

In this article, the famous Blasius equation in fluid mechanics is used to describe an optimal homotopy-analysis approach
for highly nonlinear problems. With the deformation functions defined by (17), our optimal homotopy-analysis approach con-
tains at most only three unknown convergence-control parameters c0; c1 and c2. To increase the computational efficiency, an
averaged residual error like (35) is defined, which can give good approximations of the optimal convergence-control param-
eters of the exact residual error (33), as shown in Fig. 3 and Table 1. It is found that all optimal homotopy-analysis approaches
may give much better approximations, which converge much faster than those given by Liao [19] in case of c0 ¼ �1 and
c1 ¼ c2 ¼ 0. So, it is strongly suggested to use at least one optimal convergence-control parameter to accelerate the conver-
gence of homotopy-series solution. In general, two optimal convergence-control parameters c0 and c1 (with c2 ¼ c1) may give
good enough approximations. However, because the averaged residual error (35) is a kind of approximation of the exact resid-
ual error (33), the three-parameter optimal homotopy-analysis approach might not give better approximations than one or
ng the so-called mth-order homotopy-derivative defined by (27), one can obtain exactly the same high-order deformation equation.
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two-parameter optimal approaches, as shown in this paper for Blasius flow problem. Considering the fact that much CPU time
is needed when the approximations have more than three unknown parameters, it is strongly suggested to use at first one or
two optimal convergene-control parameters in the homotopy-analysis approach. Besides, it is found that the homotopy-Padé
technique can greatly accelerate the convergence of approximations given by all optimal homotopy-analysis approach men-
tioned in this paper. Therefore, the homotopy-Padé technique is strongly suggested to use, if possible.

The optimal homotopy-analysis approach mentioned above is based on the deformation function with a few unknown
convergence-control parameters. For example,
Please
Nonlin
A1ðq; aÞ ¼ ð1� aÞ
Xþ1
n¼1

an�1qn; jaj < 1: ð46Þ
Note that A1ðq; 0Þ ¼ q is only a special case of it, although widely used today. There exist an infinite number of deformation
functions satisfying the properties (6) and (7). For example, we can define the following one-parameter deformation
function:
bA1ðq; bÞ ¼ 1
fðbÞ

Xþ1
n¼1

qn

nb
; b > 1; ð47Þ
where fðbÞ is Riemann zeta function, and b > 1 is a convergence-control parameter. We call A1ðq; aÞ and bA1ðq; bÞ the first and
second-type of one-parameter deformation functions, respectively.

Any two different deformation functions may create a new one. For example
A2ðq; a; bÞ ¼ A1ðq; aÞbA1ðq; bÞ ð48Þ
gives a two-parameter deformation function with two convergence-control parameters a and b. Currently, Zhao and Wong
[50] suggested a kind of deformation function which can define the ðmþ 1Þ-parameter deformation function
Amþ1ðq; a;bÞ ¼ a Amðq; bÞ
1þ ða� 1ÞAmðq; bÞ ; ð49Þ
where a – 0 is a convergence-control parameter and Amðq; bÞ is a m-parameter deformation function with m convergence-
control parameters b ¼ fb1; b2; . . . ; bmg. In theory, given any a convergent series
S ¼
Xþ1
n¼1

sn;
we can always define a corresponding deformation function
Aðq; sÞ ¼ 1
S

Xþ1
n¼1

snqn;
where
s ¼ s1; s2; . . .f g:
Note that it is straightforward to apply the basic ideas of the optimal homotopy-analysis approach mentioned in this paper
for all different types of deformation functions. Thus, it is very interesting to study whether or not there exists the ‘‘best”
deformation function among all of these possible ones, which gives the fastest convergent homotopy-series solution.

Note that the auxiliary linear operator L defined by (14) is rather different from the linear term of the original governing
equation (11). Using this auxiliary linear operator, it is convenient to solve the high-order deformation equations, and more
importantly, it is much easier to ensure that the homotopy-series solution converges even at infinity g ! þ1. This is
mainly because the homotopy-analysis method provides us great freedom to choose the auxiliary linear operator L. Besides,
the optimal convergence-control parameters guarantee the fast convergence of the homotopy-series solution. Thus, the
example in this paper illustrates that the homotopy-analysis method indeed satisfies the two standard (a) and (b) mentioned
at the beginning. This is the advantage of the homotopy analysis method (HAM), compared to perturbation techniques and
other nonperturbation methods. It is the reason why the HAM is valid for different types of highly nonlinear problems.
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