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A new transform, namely the homotopy transform, is defined for the first time. Then, it is
proved that the famous Euler transform is only a special case of the so-called homotopy
transform which depends upon one non-zero auxiliary parameter �h and two convergent
series

Pþ1
k¼1a1;k ¼ 1 and

Pþ1
k¼1b1;k ¼ 1. In the frame of the homotopy analysis method, a gen-

eral analytic approach for highly nonlinear differential equations, the so-called homotopy
transform is obtained by means of a simple example. This fact indicates that the famous
Euler transform is equivalent to the homotopy analysis method in some special cases.
On one side, this explains why the convergence of the series solution given by the homot-
opy analysis method can be guaranteed. On the other side, it also shows that the homotopy
analysis method is more general and thus more powerful than the Euler transform.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Solving nonlinear problems is inherently difficult even by means of numerical methods, and the stronger the nonlinearity,
the more intractable solutions becomes. Very a few nonlinear problems have closed-form solutions. In most cases, approximate
techniques are used to give asymptotic results or series solution of a given nonlinear equation. Perturbation techniques [1–6]
are widely applied to solve nonlinear equations in science and engineering. However, it is a pity that perturbation techniques
are in principle based on small/large physical parameters (perturbation quantity) and thus perturbation approximations often
break down as the nonlinearity becomes strong. To avoid this restrictions, some non-perturbative techniques, such as Lyapu-
nov artificial small parameter method [7], Adomian decomposition method [8,9] and the d-expansion method [10,11], are
developed. Although these non-perturbative techniques seem to have nothing to do with small/large physical parameters, they
however cannot guarantee the convergence of solution series, and thus are still valid only for problems with weak nonlinearity,
too.

In 1992, Liao [12] first introduced the homotopy [13], a basic concept in topology, to propose an analytic technique for
strongly nonlinear problems, namely the homotopy analysis method (HAM). Thereafter, the HAM has been improved step
by step [14–20] and has been widely applied in science, engineering and finance [21–29]. Different from perturbation tech-
niques, the HAM is independent of any small/large physical parameters. Besides, different from perturbation and traditional
non-perturbative techniques, the HAM provides us a simple way to ensure the convergence of solution series. Therefore, the
. All rights reserved.

e relationship between the homotopy analysis method and Euler transform. Commun Non-
/j.cnsns.2009.06.008

mailto:sjliao@sjtu.edu.cn
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


2 S. Liao / Commun Nonlinear Sci Numer Simulat xxx (2009) xxx–xxx

ARTICLE IN PRESS
HAM is valid even for problems with strong nonlinearity. Especially, by means of the HAM, some new solutions [30,31] of a
few nonlinear differential equations have been found, which were neglected by other analytic approximation methods and
even by numerical techniques. This shows the great potential of the HAM.

Euler transform [32] is widely applied to accelerate a convergent series or sometimes even to make a divergent series
convergent. In this paper, the relationship between the homotopy analysis method and the Euler transform is investigated.
In Section 2, the so-called generalized Taylor series is derived, which leads to the so-called homotopy transform in Section 3.
Then, it is proved that the Euler transform is only a special case of the homotopy transform. In Section 4, we show by a simple
example that the homotopy transform can be derived in the frame of the HAM in some special cases. Thus, the Euler trans-
form is equivalent to the HAM, but only in some special cases. On one side, this explains why the HAM can ensure the con-
vergence of solution series. On the other side, it also indicates that the HAM is more general and thus should be more
powerful than the Euler transform.
2. Generalized Taylor series

Definition 1. Let p be a complex number. A complex function AðpÞ is called a deformation function if it satisfies
Please
linear
Að0Þ ¼ 0; Að1Þ ¼ 1 ð1Þ
and is analytic in the region jpj 6 1 so that its Maclaurin series
Pþ1

k¼1a1;kpk is convergent in the region jpj 6 1, say,
AðpÞ ¼
Xþ1
k¼1

a1;k pk; jpj 6 1; ð2Þ
holds.

Theorem 1. Let p; z; z0 and �h–0 be complex numbers, AðpÞ and BðpÞ two deformation functions satisfying Að0Þ ¼ Bð0Þ ¼ 0;
Að1Þ ¼ Bð1Þ ¼ 1, whose Maclaurin series

Pþ1
k¼1a1;k pk and

Pþ1
k¼1b1;k pk are absolutely convergent in the region jpj 6 1. Suppose

j1þ �hj < 1 and jBðpÞj 6 1 for p 2 ½0;1�. Define
~a ¼ a1;1;a1;2;a1;3; . . .
� �

; ~b ¼ b1;1; b1;2;b1;3; . . .
� �

; ð3Þ

am;k ¼
Xk�1

i¼m�1

am�1;ia1;k�i ðm P 2; k P mÞ; ð4Þ

b0;0 ¼ 1; b0;k ¼ 0 ðk P 1Þ; bm;k ¼
Xk�1

i¼m�1

bm�1;ib1;k�i ðm P 2; k P mÞ; ð5Þ
and
Tm;kð�h;~a;~bÞ ¼ ð��hÞk
Xm�k

n¼0

Xn

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

s¼0

ak;kþsbr;n�s ð6Þ
for m P 1 and 1 6 k 6 m. If a complex function f ðzÞ is analytic at z0 but singular at nkðk ¼ 1;2; . . . ;M0Þ, where M0 may be
infinity, the series
f ðz0Þ þ
Xþ1
k¼1

f ðkÞðz0Þ
k!

ðz� z0Þk
� �

Tm;kð�h;~a;~bÞ; ð7Þ
converges to f ðzÞ in the region D ¼
TM

k¼0Sk, where Sk ¼ fz : jxkj > 1g and the complex numbers xk(k ¼ 0;1;2;3; . . . ;M; M
may be infinity) are the solutions of the algebraic equation
Bðx0Þ ¼ ð1þ �hÞ�1
;

or
1� ð1þ �hÞBðxkÞ þ �h
z� z0

nn � z0

� �
AðxkÞ ¼ 0; 1 6 n 6 M0:
Proof:. Using the definition (1) of the deformation function, we have
Að0Þ ¼ Bð0Þ ¼ 0; Að1Þ ¼
Xþ1
k¼1

a1;k ¼ 1; Bð1Þ ¼
Xþ1
k¼1

b1;k ¼ 1: ð8Þ
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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Write
f ðz0Þ

¼ f ð

¼ f ð

¼ f ð

Please
linear
½AðpÞ�m ¼
Xþ1
k¼1

a1;kpk

 !m

¼
Xþ1
k¼m

am;k pk; m P 1; ð9Þ

½BðpÞ�m ¼
Xþ1
k¼1

b1;kpk

 !m

¼
Xþ1
k¼m

bm;k pk; m P 0; ð10Þ
If am�1;k ðm P 2; k P m� 1Þ are known, it follows that
½AðpÞ�m ¼
Xþ1
k¼m

am;kpk ¼
Xþ1
k¼1

a1;k pk

 !m�1 Xþ1
k¼1

a1;k pk

 !

¼
Xþ1

i¼m�1

am�1;i pi

 ! Xþ1
j¼1

a1;j pj

 !
¼
Xþ1
k¼m

pk
Xk�1

i¼m�1

am�1;i a1;k�i

 !
which gives a recurrence formula
am;k ¼
Xk�1

i¼m�1

am�1;i a1;k�i; m P 2; k P m: ð11Þ
Similarly, it holds
bm;k ¼
Xk�1

i¼m�1

bm�1;i b1;k�i; m P 2; k P m: ð12Þ
Besides, according to the definition (10), it holds
b0;0 ¼ 1; b0;k ¼ 0 ðk P 1Þ: ð13Þ
Let us define the two complex variables
ck ¼
f ðkÞðz0Þ

k!
ðz� z0Þk; k P 1; ð14Þ

s ¼ z0 �
�hðz� z0ÞAðpÞ

1� ð1þ �hÞBðpÞ ; �h–0; ð15Þ
and construct such a related complex function
FðpÞ ¼ f ðsÞ ¼ f z0 �
�hðz� z0ÞAðpÞ

1� ð1þ �hÞBðpÞ

� �
: ð16Þ
According to (8), it holds s ¼ z0 when p ¼ 0 and s ¼ z when p ¼ 1, respectively. Therefore, we have
Fð0Þ ¼ f ðz0Þ; Fð1Þ ¼ f ðzÞ: ð17Þ
In other words, FðpÞ is a homotopy, i.e. FðpÞ : f ðz0Þ � f ðzÞ. Writing
ds ¼ � �hðz� z0ÞAðpÞ
1� ð1þ �hÞBðpÞ ; ð18Þ
we have FðpÞ ¼ f ðz0 þ dsÞ. Provided that jdsj is sufficiently small and jð1þ �hÞBðpÞj < 1 holds, then, by means of the definitions
(11) and (12), the Maclaurin series of FðpÞ is
þ
Xþ1
k¼1

f ðkÞðz0Þ
k!

ðdsÞk

z0Þ þ
Xþ1
k¼1

f ðkÞðz0Þ
k!

� �hðz� z0ÞAðpÞ
1� ð1þ �hÞBðpÞ

� �k

z0Þ þ
Xþ1
k¼1

ckð��hÞkAkðpÞ½1� ð1þ �hÞBðpÞ��k

z0Þ þ
Xþ1
k¼1

ckð��hÞkAkðpÞ
Xþ1
r¼0

kþ r � 1
r

� �
ð1þ �hÞrBrðpÞ
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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Please
linear
¼ f ðz0Þ þ
Xþ1
k¼1

Xþ1
r¼0

ck
kþ r � 1

r

� �
ð��hÞkð1þ �hÞr

Xþ1
i¼k

ak;ipi
Xþ1
j¼r

br;j pj

¼ f ðz0Þ þ
Xþ1
k¼1

Xþ1
r¼0

ck
kþ r � 1

r

� �
ð��hÞkð1þ �hÞr

Xþ1
s¼kþr

ps
Xs�r

i¼k

ak;i br;s�i

 !

¼ f ðz0Þ þ
Xþ1
s¼1

ps
Xs

k¼1

ckð��hÞk
Xs�k

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xs�r

i¼k

ak;i br;s�i

 !

¼ f ðz0Þ þ
Xþ1
n¼1

rn pn; ð19Þ
where
rn ¼
Xn

k¼1

ckð��hÞk
Xn�k

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

i¼k

ak;i br;n�i

 !
: ð20Þ
Let xkðk ¼ 0;1;2;3; . . . ; M; M may be infinity) denote all singularities of FðpÞ. Due to (16), x0, the solution of the equation
1� ð1þ �hÞBðx0Þ ¼ 0; ð21Þ
is obviously a singularity of FðpÞ. Besides, each original singularity nk ð1 6 k 6 M0Þ of f ðzÞ gives corresponding singularity (or
singularities) xn governed by the equation
z0 �
�hðz� z0ÞAðxnÞ

1� ð1þ �hÞBðxnÞ
¼ nk; ð22Þ
so that xn ð1 6 n 6 MÞ must be the solution(s) of the following equations
1� ð1þ �hÞBðxnÞ þ �h
z� z0

nk � z0

� �
AðxnÞ ¼ 0; 1 6 k 6 M0: ð23Þ
The Maclaurin series (19) converges to Fð1Þ ¼ f ðzÞ at p ¼ 1 if and only if all singularities xk of FðpÞ are out of the region
jpj 6 1, say,
jxkj > 1; k ¼ 0;1;2; . . . ; M: ð24Þ
Thus, by means of (19) and (20), it holds
f ðzÞ ¼ Fð1Þ ¼ f ðz0Þ þ lim
m!þ1

Xm

n¼1

rn

¼ f ðz0Þ þ lim
m!þ1

Xm

n¼1

Xn

k¼1

ckð��hÞk
Xn�k

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

i¼k

ak;i br;n�i

 !

¼ f ðz0Þ þ lim
m!þ1

Xm

k¼1

ckð��hÞk
Xm

n¼k

Xn�k

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

i¼k

ak;i br;n�i

 !

¼ f ðz0Þ þ lim
m!þ1

Xm

k¼1

f ðkÞðz0Þ
k!

ðz� z0Þk
� �

Tm;kð�h;~a;~bÞ

ð25Þ
in the region D ¼
TM

k¼0Sk, where Sk ¼ fz : jxkj > 1g and
Tm;kð�h;~a;~bÞ ¼ ð��hÞk
Xm

n¼k

Xn�k

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

i¼k

ak;i br;n�i

 !

¼ ð��hÞk
Xm�k

n¼0

Xn

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xnþk�r

i¼k

ak;i br;nþk�i

 !

¼ ð��hÞk
Xm�k

n¼0

Xn

r¼0

kþ r � 1
r

� �
ð1þ �hÞr

Xn�r

s¼0

ak;kþs br;n�s

 !
: �

ð26Þ
Definition 2. The series (7) is called the generalized Taylor series of the complex function f ðzÞ analytic at z ¼ z0.
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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3. Homotopy transform

Write the sequence sn ¼
Pn

k¼0uk for a series
Pþ1

k¼0uk. Due to Agnew’s [32] definition, the Euler transform, denoted by EðqÞ,
of the sequence fsng is the sequence fwng defined by
Please
linear
wn ¼
Xn

k¼0

n
k

� �
qkð1� qÞn�ksk: ð27Þ
Note that the so-called generalized Taylor series (7) is valid for a complex function and is dependent upon one auxiliary
parameter �h and the two complex analytic functions AðpÞ and BðpÞ with their Maclaurin series
AðpÞ ¼
Xþ1
k¼1

a1;k pk; BðpÞ ¼
Xþ1
k¼1

b1;k pk
under the restriction
Xþ1
k¼1

a1;k ¼ 1;
Xþ1
k¼1

b1;k ¼ 1:
Here, the two convergent series
Pþ1

k¼1a1;k and
Pþ1

k¼1b1;k are derived from the two analytic functions AðpÞ and BðpÞ, the so-
called deformation functions. However, the definition (6) can be generalized by directly defining the two convergent seriesPþ1

k¼1a1;k ¼ 1 and
Pþ1

k¼1b1;k ¼ 1. For example,
a1;k ¼ð1� cÞck�1; jcj < 1 ð28Þ

b1;k ¼
6

ðk pÞ2
; ð29Þ
and so on. There are many such kinds of convergent series. Thus, we can define a new transform for a sequence as below.

Definition 3. Given one non-zero auxiliary parameter �h and two convergent series
Pþ1

k¼1a1;k ¼ 1 and
Pþ1

k¼1b1;k ¼ 1, the so-
called homotopy transform, denoted by Tð�h;~a;~bÞ, of a series

Pþ1
k¼0uk, is a sequence flng defined by
ln ¼ u0 þ
Xn

k¼1

uk Tn;kð�h;~a;~bÞ; ð30Þ
where Tn;kð�h;~a;~bÞ is given by (6) under the definitions (3)–(5). The series
Pþ1

k¼0uk is called summable by the homotopy trans-
form Tð�h;~a;~bÞ if ln tends to a bounded value as n! þ1.

Lemma 1. If a1;1 ¼ b1;1 ¼ 1, and a1;k ¼ b1;k ¼ 0 for k > 1, corresponding to AðpÞ ¼ BðpÞ ¼ p, then
Tm;kð�h;~a;~bÞ ¼ Um;kð�hÞ; k P m; ð31Þ
where Tm;kð�h;~a;~bÞ is defined by (6) and Um;kð�hÞ is given by
Um;kð�hÞ ¼ ð��hÞk
Xm�k

n¼0

nþ k� 1
n

� �
ð1þ �hÞn; m P 1; 1 6 k 6 m: ð32Þ
Proof:. When a1;1 ¼ b1;1 ¼ 1 and a1;k ¼ b1;k ¼ 0 for k > 1, according to the definitions (3)–(5), we have
ai;j ¼ bi;j ¼
1; i ¼ j;

0; j > i;

�

for i P 0; j P i. Then, according to the definitions (6) and (32), it holds for m P 1; 1 6 k 6 m that
Tm;kð�h;~a;~bÞ ¼ ð��hÞk
Xm�k

n¼0

Xn

r¼0

kþ r � 1
r

� �
ð1þ �hÞrak;k br;n

¼ ð��hÞk
Xm�k

n¼0

kþ n� 1
n

� �
ð1þ �hÞrak;k bn;n

¼ ð��hÞk
Xm�k

n¼0

kþ n� 1
n

� �
ð1þ �hÞr

¼ Um;kð�hÞ: �
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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Theorem 2. Write the sequence sn ¼
Pn

k¼0uk for a series
Pþ1

k¼0uk and let q and �h be complex numbers. For given two convergent

series

Pþ1
k¼1a1;k ¼ 1 and

Pþ1
k¼1b1;k ¼ 1, the Euler transform EðqÞ of the sequence fsng is the same as the homotopy transform

Tð�h;~a;~bÞ of the series
Pþ1

k¼0uk in case of �h ¼ �q, a1;1 ¼ b1;1 ¼ 1 and a1;k ¼ b1;k ¼ 0 for k > 1.

Proof:. Due to Agnew’s [32] definition (27) of Euler transform EðqÞ, the sequence fl̂mg given by the Euler transform of the
sequence fsng reads
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Please
linear
l̂m ¼
Xm

k¼0

m

k

� �
qkð1� qÞm�ksk

¼
Xm

k¼0

m

k

� �
qkð1� qÞm�k

Xk

n¼0

un ¼
Xm

n¼0

un

Xm

k¼n

m

k

� �
qkð1� qÞm�k

¼ u0

Xm

k¼0

m

k

� �
qkð1� qÞm�k þ

Xm

n¼1

un

Xm

k¼n

m

k

� �
qkð1� qÞm�k

¼ u0 þ
Xm

n¼1

un

Xm

k¼n

m

k

� �
qkð1� qÞm�k

ð33Þ
According to Lemma 1, it holds Tm;nð�h;~a;~bÞ ¼ Um;nð�hÞ when a1;1 ¼ b1;1 ¼ 1 and a1;k ¼ b1;k ¼ 0 (k > 1). Therefore, by means of
the definition (32), the sequence flmg given by the homotopy transform Tð�h;~a;~bÞ in case of �h ¼ �q, a1;1 ¼ b1;1 ¼ 1 and
a1;k ¼ b1;k ¼ 0 (k > 1) is given by
lm ¼ u0 þ
Xm

n¼1

unUm;nð�qÞ ¼ u0 þ
Xm

n¼1

unqn
Xm�n

k¼0

nþ k� 1
k

� �
ð1� qÞk: ð34Þ
Enforcing l̂m ¼ lm and comparing (33) with (34), it remains to show that
qn
Xm�n

k¼0

nþ k� 1
k

� �
ð1� qÞk ¼

Xm

k¼n

m

k

� �
qkð1� qÞm�k

; 1 6 n 6 m: ð35Þ
When 1 6 n 6 m, we have
qn
Xm�n

k¼0

nþ k� 1
k

� �
ð1� qÞk ¼ qn

Xm�n

k¼0

nþ k� 1
k

� �Xk

r¼0

k

r

� �
ð�qÞr

¼
Xm�n

r¼0

ð�qÞnþrð�1Þn
Xm�n

k¼r

nþ k� 1
k

� �
k

r

� � ð36Þ
and
Xm

k¼n

m
k

� �
qkð1� qÞm�k ¼

Xm

k¼n

m
k

� �
qk
Xm�k

r¼0

m� k

r

� �
ð�qÞr

¼
Xm

k¼n

m

k

� �
ð�1Þk

Xm�k

r¼0

m� k

r

� �
ð�qÞkþr

¼
Xm�n

k¼0

m

kþ n

� �
ð�1Þkþn

Xm�n�k

r¼0

m� n� k

r

� �
ð�qÞnþkþr

¼
Xm�n

s¼0

ð�qÞnþsð�1Þn
Xs

k¼0

ð�1Þk
m

kþ n

� �
m� n� k

s� k

� �

¼
Xm�n

r¼0

ð�qÞnþrð�1Þn
Xr

k¼0

ð�1Þk
m

kþ n

� �
m� n� k

r � k

� �

¼
Xm�n

r¼0

ð�qÞnþrð�1Þn
Xr

k¼0

ð�1Þk
m

m� n� r

� �
r þ n

kþ n

� �
;

ð37Þ
where we use such a formula that in the relevant ranges it holds
m

kþ n

� �
m� k� n

r � k

� �
¼

m

m� n� r

� �
r þ n

kþ n

� �
: ð38Þ
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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So, by (35)–(37), we need to show
Please
linear
Xm�n

k¼r

nþ k� 1
k

� �
k

r

� �
¼
Xr

k¼0

ð�1Þk
m

m� n� r

� �
r þ n

kþ n

� �
;1 6 n 6 m: ð39Þ
Noticing that, for n P 1 and sufficiently small x,
Xþ1
r¼0

xr nþ r � 1
r

� �
¼ ð1� xÞ�n

; ð40Þ
and that
Xþ1
r¼0

xr
Xr

k¼0

ð�1Þk
r þ n

kþ n

� �

¼
Xþ1
k¼0

ð�1Þk
Xþ1
r¼k

r þ n

kþ n

� �
xr ¼

Xþ1
k¼0

ð�1Þkxk
Xþ1
r¼0

r þ kþ n

kþ n

� �
xr

¼
Xþ1
k¼0

ð�1Þkxkð1� xÞ�n�k�1 ¼ ð1� xÞ�n�1
Xþ1
k¼0

ð�1Þkxkð1� xÞ�k

¼ ð1� xÞ�n
;

ð41Þ
it holds
nþ r � 1
r

� �
¼
Xr

k¼0

ð�1Þk
r þ n

kþ n

� �
: ð42Þ
According to (39) and (42), we need to show
Xm�n

k¼r

nþ k� 1
k

� �
k

r

� �
¼

m

m� n� r

� �
nþ r � 1

r

� �
: ð43Þ
Noticing that
Xm�n

k¼r

nþ k� 1
k

� �
k

r

� �
¼
Xm�n�r

k¼0

nþ kþ r � 1
kþ r

� �
kþ r

r

� �

¼
Xm�n�r

k¼0

ðkþ r þ n� 1Þ!
ðn� 1Þ!k!r!

¼
nþ r � 1

r

� � Xm�n�r

k¼0

nþ kþ r � 1
k

� �
;

ð44Þ
this reduces to show that
m

m� n� r

� �
¼
Xm�n�r

k¼0

nþ kþ r � 1
k

� �
: ð45Þ
Writing i ¼ nþ r, the above expression is
m

m� i

� �
¼
Xm�i

k¼0

kþ i� 1
k

� �
¼
Xm�i

k¼0

kþ i� 1
i� 1

� �
¼
Xm�1

j¼i�1

j

i� 1

� �
: ð46Þ
In order to prove this, we use the formula
XN

j¼n

j

n

� �
¼

N þ 1
nþ 1

� �
ð47Þ
in a handbook of mathematics [33]. Setting N ¼ m� 1; n ¼ i� 1 in above formula gives
Xm�1

j¼r�1

j

i� 1

� �
¼

m

i

� �
¼

m

m� i

� �
: � ð48Þ
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Remark 1. According to Theorem 2, the Euler transform EðqÞ is only a special case of the so-called homotopy transform
Tð�h;~a;~bÞ defined by (30) when �h ¼ �q, a1;1 ¼ b1;1 ¼ 1 and a1;k ¼ b1;k ¼ 0 (k > 1), corresponding to the two simplest defor-
mation functions AðpÞ ¼ BðpÞ ¼ p.

Here, we would like to emphasize two points. First, the Euler transform is only a special case of the so-called homotopy
transformation. Thus, the homotopy transform is more general and thus should be more powerful. Secondly, Euler trans-
form is widely used to accelerate convergence of a series or to make a divergent series convergent. Thus, the homotopy
transform provides us with a new but more general way to accelerate convergence of a series or to make a divergent ser-
ies convergent.
4. Relation between the homotopy analysis method and Euler transform

In this section, we use one simple example to show that the so-called homotopy transform defined by (30) can be ob-
tained in the frame of the homotopy analysis method.

For the simplicity, let us consider a nonlinear ordinary differential equation
Please
linear
u0ðxÞ þ uðxÞ 1� 1
2

uðxÞ
� �

¼ 0 ð49Þ
subject to the boundary condition
uð0Þ ¼ 1: ð50Þ
This equation has the closed-form solution uðxÞ ¼ 2=ð1þ exÞ.
Let �h–0 denote a non-zero auxiliary parameter, p 2 ½0;1� the embedding parameter, and �AðpÞ; �BðpÞ the deformation func-

tions satisfying
�Að0Þ ¼ �Bð0Þ ¼ 0; �Að1Þ ¼ �Bð1Þ ¼ 1; ð51Þ
and their Maclaurin series AðpÞ ¼
Pþ1

k¼1�a1;k pk and BðpÞ ¼
Pþ1

k¼1
�b1;k pk are convergent at p ¼ 1, respectively. Define the nonlin-

ear operator
Nu ¼ du
dx
þ u 1� 1

2
u

� �
: ð52Þ
We construct a family of equations
½1� �BðpÞ�L½hðx;pÞ � u0ðxÞ� ¼ �h�AðpÞN½hðx; pÞ�; ð53Þ
subject to the boundary condition
hð0;pÞ ¼ 1; ð54Þ
where L is a properly chosen auxiliary linear operator satisfying
Lð0Þ ¼ 0; ð55Þ
and u0ðxÞ is an initial guess satisfying the boundary condition u0ð0Þ ¼ 1. When p ¼ 0, according to (51), we have from Eqs.
(53) and (54) that
hðx;0Þ ¼ u0ðxÞ: ð56Þ
When p ¼ 1, Eqs. (53) and (54) are exactly the same as the original Eqs. (49) and (50), respectively, thus it holds
hðx;1Þ ¼ uðxÞ: ð57Þ
Assume that �h; �AðpÞ; �BðpÞ are so properly chosen that the solution hðx; pÞ of Eqs. (53) and (54) exists for all p 2 ½0;1�. Thus, as
the embedding parameter p increases from 0 to 1, the solution hðx; pÞ of Eqs. (53) and (54) varies continuously from the initial
guess u0ðxÞ to the solution uðxÞ of the original Eqs. (49) and (50). This continuous variation is called deformation in topology.
So, Eqs. (53) and (54) are called the zeroth-order deformation equations.

Note that we have great freedom to choose L;u0ðxÞ; �h; �AðpÞ and �BðpÞ. Assume that all of them are so properly chosen that
the Maclaurin series of hðx; pÞ about p, i.e.
hðx;pÞ � u0ðxÞ þ
Xþ1
k¼1

ukðxÞ pk; ð58Þ
exists and besides is convergent at p ¼ 1, where
ukðxÞ ¼
1
k!

okhðx;pÞ
opk

					
p¼0

:
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Thus, we have by (57) the series solution
Please
linear
uðxÞ ¼ u0ðxÞ þ
Xþ1
m¼1

umðxÞ: ð59Þ
The above expression gives a relationship between the initial guess u0ðxÞ and the solution uðxÞ of the original Eqs. (49) and
(50) via the unknown terms umðxÞ.

Differentiating the zeroth-order deformation Eqs. (53) and (54) m times (m P 1) with respect to p, dividing them by m!

and then setting p ¼ 0, we have the so-called mth-order deformation equations
L umðxÞ �
Xm�1

k¼1

�b1;k um�kðxÞ
" #

¼ �h
Xm�1

k¼1

�a1;m�k RkðxÞ; ð60Þ
subject to the boundary condition
umð0Þ ¼ 0; ð61Þ
where
RkðxÞ ¼
1
k!

okN½hðx; pÞ�
opk

					
p¼0

¼ u0kðxÞ þ ukðxÞ �
1
2

Xk

i¼0

uiðxÞuk�iðxÞ: ð62Þ
The partial sum
u0ðxÞ þ
XM

m¼1

umðxÞ ð63Þ
gives the Mth-order approximation of the considered nonlinear problem.
Different from perturbation techniques, the above approach is independent of any small/large physical parameters and

thus is more general. Besides, it provides us great freedom to choose the initial guess and the auxiliary linear operator L

so that we can use different types of base functions to approximate the solution. More importantly, the freedom on the
choice of the auxiliary parameter �h and the two deformation functions �AðpÞ and �BðpÞ in the zeroth-order deformation Eqs.
(53) and (54) provides us a convenient way to ensure the convergence of the solution series. Here, using this kind of freedom,
we show that the homotopy transform (6) can be obtained in the frame of the homotopy analysis method in some special
cases.

Let AðpÞ and BðpÞ be two deformation functions satisfying Að0Þ ¼ Bð0Þ ¼ 0 and Að1Þ ¼ Bð1Þ ¼ 1, and their Maclaurin series
AðpÞ ¼

Pþ1
k¼1a1;k pk and BðpÞ ¼

Pþ1
k¼1b1;k pk are convergent at p ¼ 1. Then, according to the definition (51), it is obvious that
�AðpÞ ¼ AðpÞ ð64Þ
and
�BðpÞ ¼ BðpÞ þ �h½BðpÞ � AðpÞ� ð65Þ
are also deformation functions, whose Maclaurin series are
�AðpÞ ¼
Xþ1
k¼1

a1;kpk ð66Þ
and
�BðpÞ ¼
Xþ1
k¼1

½ð1þ �hÞb1;k � �ha1;k�pk; ð67Þ
respectively. Moreover, we choose
u0ðxÞ ¼ 1 ð68Þ
as our initial guess and
L ¼ d
dx

ð69Þ
as our auxiliary linear operator. Then, the zeroth-order deformation Eq. (53) becomes
½1� ð1þ �hÞBðpÞ þ �hAðpÞ� ohðx; pÞ
ox

¼ �hAðpÞ ohðx;pÞ
ox

þ hðx;pÞ 1� 1
2

hðx; pÞ
� �� 


ð70Þ
and the corresponding mth-order ðm P 1Þ deformation equation is
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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Please
linear
d
dx

umðxÞ �
Xm�1

k¼1

½ð1þ �hÞb1;m�k � �ha1;m�k�ukðxÞ
( )

¼ �h
Xm�1

k¼1

a1;m�k u0kðxÞ þ ukðxÞ �
1
2

Xk

i¼0

uiðxÞuk�iðxÞ
" #

; ð71Þ
with the corresponding boundary condition
umð0Þ ¼ 0: ð72Þ
The solution of the high-order deformation Eqs. (71) and (72) is given by the following recurrence formula
umðxÞ ¼
Xm�1

k¼1

½ð1þ �hÞ b1;m�k � �h a1;m�k�ukðxÞ þ �h
Xm�1

k¼1

a1;m�k

Z x

0
u0kðxÞ þ ukðxÞ �

1
2

Xk

i¼0

uiðxÞuk�iðxÞ
" #

dx ð73Þ
Thus, using the initial guess (68) and above recurrence formula, we can get the high-order approximations by means of sym-
bolic computation software. In surprise, it is found that the corresponding mth-order approximation reads
u0ðxÞ þ
Xm

k¼1

ukðxÞ ¼ 1þ
Xm

k¼1

ak xk
� �

Tm;kð�h;~a;~bÞ; ð74Þ
where Tm;kð�h;~a;~bÞ is exactly given by (6) under the same definitions (3)–(5), and the coefficient ak is given by the Taylor ser-
ies

Pþ1
k¼0ak xk of the exact solution uðxÞ ¼ 2=ð1þ exÞ of Eqs. (49) and (50).

We can prove the correctness of (74) in another way. Notice that the zeroth-order deformation Eq. (70) can be rewritten
as
ohðx;pÞ
o

��hAðpÞ
1�ð1þ�hÞBðpÞ

 �
x

h iþ hðx; pÞ 1� 1
2

hðx;pÞ
� �

¼ 0; ð75Þ
whose solution, satisfying the boundary condition (54), is exactly
hðx;pÞ ¼ 2

1þ exp ��hAðpÞx
1�ð1þ�hÞBðpÞ

h i : ð76Þ
Similarly as showed in Section 2, expanding hðx; pÞ defined above in power series of p and then setting p ¼ 1, we get
uðxÞ ¼ hðx;1Þ ¼ 1þ lim
M!þ1

XM

k¼1

akxk
� �

Tm;kð�h;~a;~bÞ; ð77Þ
where Tm;kð�h;~a;~bÞ is exactly the same as (6), and ak is given by the Taylor series
Pþ1

k¼0ak xk of the exact solution
uðxÞ ¼ 2=ð1þ exÞ.

Therefore, the so-called homotopy transform described in Section 3 can be indeed derived in the frame of the homotopy
analysis method in some special cases. As proved in Section 3, the famous Euler transform EðqÞ is only a special case of the
homotopy transform Tð�h;~a;~bÞ in case of �h ¼ �q and a1;1 ¼ b1;1 ¼ 1 and a1;k ¼ b1;k ¼ 0 for k > 1, corresponding to the sim-
plest deformation functions AðpÞ ¼ BðpÞ ¼ p. Thus, for some special choices of the initial guess and the auxiliary linear oper-
ator, the homotopy analysis method in case of AðpÞ ¼ BðpÞ ¼ p might be sometimes equivalent to the Euler transform.

On one side, this fact explains why the convergence of solution series given by the homotopy analysis method can be
guaranteed, because the Euler transform is widely applied to accelerate the convergence of a series or to make a divergent
series convergent. On the other side, it should be emphasized that the homotopy analysis method is much more general than
the Euler transform, because one has great freedom to choose not only different types of deformation functions AðpÞ and BðpÞ,
but also the auxiliary linear operator L and the initial guess. Note that the homotopy transform (30) is obtained in the frame
of the homotopy analysis method by using the special initial guess (68) and the special auxiliary linear operator (69) for the
considered example. However, by means of the homotopy analysis method, we have great freedom to choose other types of
initial guess and auxiliary linear operators. For example, if the auxiliary linear operator Lu ¼ u0 þ ku and the initial guess
u0ðxÞ ¼ expð�k xÞ are chosen for the considered simple example, where k > 0 is the second auxiliary parameter, we can ob-
tain approximations expressed by exponential base functions
expð�kxÞ; expð�2kxÞ; expð�3kxÞ; . . .f g
Obviously, such kind of approximations contain two non-zero auxiliary parameters �h and k, and thus is certainly different
from the Euler transform that has only one auxiliary parameter q. In general, if approximations given by the homotopy anal-
ysis method have more than one auxiliary parameters, it is certainly not equivalent to the Euler transform. For example, for a
nonlinear problem governed by n coupled equations, the solution series given by the homotopy analysis method may con-
tain n different auxiliary parameters �h1; �h2; . . . ; �hn even in case of AðpÞ ¼ BðpÞ ¼ p, which is certainly not equivalent to the
Euler transform.

In summary, the famous Euler transform is equivalent to the homotopy analysis method for some special choices of the
initial guess and the auxiliary linear operators in case of the simplest deformation functions AðpÞ ¼ BðpÞ ¼ p and when there
is only one auxiliary parameter �h. But, dependent upon (at least) one non-zero auxiliary parameter �h and two convergent
cite this article in press as: Liao S. On the relationship between the homotopy analysis method and Euler transform. Commun Non-
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series
Pþ1

k¼0a1;k and
Pþ1

k¼0b1;k, the homotopy analysis method is more general and thus more powerful than the Euler
transform.

However, it is still an open question how to choose better auxiliary parameter �h and better deformation functions AðpÞ
and BðpÞ, corresponding to the two convergent series

Pþ1
k¼0a1;k and

Pþ1
k¼0b1;k, so that the corresponding series solution given

by the homotopy analysis method converges faster. So, some pure mathematical studies are needed in future.
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