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Abstract

An analytic technique, namely the Homotopy Analysis Method (HAM), is applied to solve the nonlinear mKdV equation.
Solutions for periodic waves are given and compared with the exact ones, which shows the validity of the HAM for the nonlinear
periodic wave problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Homotopy Analysis Method (HAM1]) is an analytic technique for nonlinear problems. This method has been
successfully applied to many nonlinear problems in engineering and science, such as the magnetohydrodynamic
flows of non-Newtonian fluids over a stretching shgt nonlinear progressive waves in deep wdgj; free
oscillations of positively damped systems with algebraically decaying ampl[#iddree oscillations of self-
excited systemb], similarity boundary layer equatiof§]. All of these successful applications verified the validity,
effectiveness and flexibility of the HAM. For more details, we refer the reader to[LLidh

In this paper, we apply the HAM to the mKdV equation

wy + auluy 4 B =0, 1)

which describes the motions of waves in nonlinear optics, plasma or fluids. Periodic solutions for this equation are
given and verified by the exact ones in terms of Jacobi elliptic fun¢8d@]. The validity and effectiveness of the
HAM in solving the nonlinear periodic wave problems are shown.
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2. Mathematical formulation

Consider the travelling wave solutionsB§. (1). Under the transformation
u(x,t) = Af(6), 6 =kx— wt, (2)
whereA is the wave amplitudek the wave number, and the angular frequency, the mKd&q. (1) becomes

—cf +yf2f +uf" =0, (3)
where primes denote derivatives with respea,tand
c= % y = aA?, = pk>. (4)
In this section, we will give analytic solutions Ex. (3 by means of HAM.
Due to the periodicity of the problem, the solutig(®) of Eq. (3 can be expressed by the Fourier Sine Series, if
f(#) is an odd function, or by the Fourier Cosine Serieg|(#f) is an even function. This provides us with the Rule
of Solution Expression (RSE), which is the cornerstone of the HAM, and will be discussed respectively.

2.1. Solution expressed by Sine Series

In this case, the solution can be expressed by

+00
£©) = ansin(mo), (5)
m=1
wherea,, (im =1, 2, ..., +00) are coefficients. This provides us with the Rule of Solution Expression. Choosing

fo() = sing as the initial guess of (9), and

3
3°$(6, q) n ap(6, q)

LIpO. 9 = — o (6)
as the auxiliary linear operator, we construct the zeroth order deformation equation

(1= q)LIF (0. q) — fo(6)] = qhN[F(0. q). C(q)]. 7
whereq is an embedding parametéra non-zero auxiliary parameter, and

N[F(©, ), C(@)] = —C(@)F'(6. q) + vF*(6, ) F'(6, 9) + nF" (6, ). ®)

where primes denote derivatives with respedf.ttt is seen fromEg. (7) that as the parameterincreases from
0 to 1, the solutionF (6, g) varies from fo(6) to f(#), so does th&(g) from co, the initial guess o€, to c. If this
continuous variation is smooth enough, the Maclaurin’s series with respgcato be constructed fdr (6, ¢) and
C(q) respectively, and further, if these two series are convergental, we then have

~+00
£©) = fo0) + Y fu®), ©)

m=1

+o00
c:co—i-Zcm, (10)
m=1
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where
1 9"F(0,
Im(0) = _|—(m 9 ) (11)
m!  0q 4=0
19"
o= 2CQ) (12)
m!  og™ 4=0

are called thenth order deformation derivatives.
DifferentiatingEq. (7) mtimes with respect tq then setting; = 0 and finally dividing them byn!, we gain the
mth order deformation equations fgj, (6)

L[ fn (@) = xm fm—-1(0)] = hRn(0), m >1, (13)
where
1 ™ IN[F(6,9). C(g)]
Ra®) = G agn1 o
m—1 n m—1
=y, (Z fk(e)fnk(e)> Fre1-n®) = D cnfr1-a0) + Bfyr-1(6), (14)
n=0 \k=0 n=0
and
1, m>1,
Xm = {0’ m=1 (15)

It should be emphasized th&}, (0) is function of f;(6) andc, wherek = 0,1, 2, ..., m — 1. They are known
when solvingf;, (0), except forc,,—1. FurthermoreR,,(6) can be expressed by

m+1

Rp(0) =) &n.ncoS[(2 — 1)), (16)

n=1

whereg,, ,, is a coefficient. Due to the Rule of Solution Expressign the solution ofEqg. (13 shouldnot contain
the so-called secular teréhcosd. To ensure thisR,, (6) should not contain the term cési.e. the coefficient of
cos# must be zero. This leads to an algebraic equation

Em,l = 07 (17)

which can be used to determing_j.
The general solution dq. (13 is

m+1
fm(60) = —h X:; porm _Ef)(zn Y sin[(2n — 1)8] + xm fin—1(8) + C1 + C2cosf + C35sinéd, (18)

whereC1, C2, andCs3 are the integral constants. According to the Rule of Solution Expre§sSjowe have
Ci1=Cx=0. (29)
To ensure the amplitude ¢f(9) to be 1, we demand

fm(%n)_fm(%n) =0, (20)
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which determines the constafig. We solveEgs. (13) and (I)rfor m = 1, 2, 3, ..., successively, and at thdth
order approximation we have the analytic solution

M
O~ > ful®). 1)
m=0
M
c~ Z Cm. (22)
m=0

2.2. Solution expressed by Cosine Series

In this case, the solutiory(#) of Eq. (3 can be expressed by the Cosine series me@s(where m =

0,1,2,...,4+00. Note that, f(9) contains a constant term, which is the main difference between this case and
the previous one. Integratirigg. (3 once respect t6, and letting the integral constant to be zero, we have
uf" —cf + gvf3=0. (23)

Under the transformation

f(6) =&+ 1g(0), (24)
wheresé is a constant, ani the amplitude of the periodic functiof{#), Eq. (23 becomes

g (6) — c[8 + rg(0)] + ¥[8+ 1g(6)] = O, (25)

where the constant terép the amplitude., the wave velocity, and the periodic functiop(d) are unknowns to be
determined under the frame of HAM. The solution(®%) can be expressed by

+00
g(®) = Y by cosnd), (26)
m=1
whereb,, (im =1, 2, ..., +00) are coefficients. This provides us with the Rule of Solution Expression. Choosing
go(0) = cosh as the initial guess of(9), and
9¢(6, )
LIpO. 9] = =57 + 9(0.9) (27)
as the linear operator, we construct the zeroth order deformation equation
(1—q)L[G(6. q) — 80(0)] = hgN[G(6. q). C(q), Alg). A(g)]. (28)

subject to the restrictions
G(0,9) — G(m,q) = 2, (29)
Ag) + A(g)G(0,q) = 1, (30)
with definition

NIG(6, q), C(q), Ag), A(@)] = £AG" — C(A + AG) + 37(A + AG)3, (1)
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where primes denote derivatives with respea.tdhe correspondingih order deformation equation is

L[gm(®) — xmgm—-1(0)] = hR,(6), (32)
subject to the restrictions
gm(o) - gm(n) =0, (33)
Om + Z )\ngm—n(o) =0, (34)
n=0

for m > 1, whereR,,(0) is a function ofg,(0), ck, §x andi, (k=0,1,2,...,m — 1) which are thekth order
deformation derivatives corresponding@v, ¢), C(q), A(g) andA(g), respectively. Note thak,, (0) contains three
unknowns, i.ec;,_1, 8,,—1, andi,,_1, when solvingg,, (6).

Itis found thatr,, (9) can be expressed by

2m+1

Rm(e) = Z gm,n 005@9)9 (35)

n=0

whereé,, ,, is a coefficient. Under the Rule of Solution Expresgi@6), the solutiong,, (6) of Eq. (39 should not
contain the constant term and the so-called seculardein®. To ensure thisk,, (0) should not contain the constant
term and the term cas which leads to two algebraic equations

‘i:m,O = 07 ‘i:m,l = O» (36)

to determine:,,_1, 8,,—1 andi,,_1 with the aid ofEq. (34. Whenm = 1, this set of algebraic equations is

2y8%+ 3yA2 —co =0, (37)
%yk% + )/8(2) —co—u =0, (38)
A +680=1, (39)

which is nonlinear, and from which we get

co = g(1ly + 10u — 4,/6y? + 15pp), (40)

8o = §(—3+ 26+ I5u/y), (41)

ko= 2(4~ 6T T5u7). (42)
as the initial guess af, § andi. However, this set of algebraic equations is always linear when?2, and can be
solved easily.

The general solution dEq. (39 is

mtl & n COS@O)
gn(0) = =h D = + X fu-1(6) + C18in0 + Cz cOS, (43)
n=2

whereC1, C2 are the integral constants. According to the Rule of Solution expre&2@rwe haveC; = 0. The
constantCs is determined by33). In this way, we get,,, (), ¢;n—1, 8, —1andr,,_1form = 1, 2, 3, . . ., successively,
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and at theMth order approximation, we have the analytic solutionEgf (23:

M M M
fO)=8+21g0)~ ) om+ (Z xm) (Z gm(9)> : (44)
m=0 m=0

m=0

Y e (45)

m=0

3. Validation of the solutions

The procedure described above can be realized easily with the aid of symbol calculation software, such as
MATHEMATICA. In this section, we verify our analytic solutions with the exact ones in terms of Jacobi elliptic
functions[8,9].

In the frame of HAM, the periodic solution is expressed as a series of sine or cosine functions. Note that our
solution series contains the paramétawhich provides us with a simply way to adjust and control the convergence
of the solution series. In general, by means of the so-calledrve, it is straightforward to choose an appropriate
range fors which ensures the convergence of the solution sefigs.1 shows the wave velocity under different
h, compared with the exact value 1.6682, in casg ef 5 andy = —0.1. It is seen that convergent results can be
obtained when k # < 3. Thus, we can choose an appropriate valudifiorthis range to get convergent solution
of the wave velocity. Wheh = 2, our solution ot is 1.66866, which is very close to the exact value. In this case,
our analytic solution off () expressed by sine series agrees well with the exact one in terms of Jacobi sifiptic
function, as shown ifrig. 2 Note that, wherr = 5 andu = —0.1, the modulus of the solution expressed by Jacobi
elliptic sine functions is 0.999083, which means the wave tends to a solitary[#&ye

Fig. 3 shows the 20th order of approximation 66) expressed by sine series, comparing with the exact one
in terms of Jacobi ellipticosinefunction, in case ofy = 5, u = 0.1 andh = —2. In this case, the wave velocity
given by HAM is 0.831337, also agrees well with the exact value 0.831H§34 compares the analytic solution
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Fig. 1. Wave velocityc under 20th order of approximation with differéiitcompared with the exact value 1.6682, in casg ef 5, u = —0.1.
Solid line: solution given by HAM; dotted line: exact value.
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FNUN (R B

Fig. 2. Solution off(#) under 20th order of approximation, compared with the exact one in cased, 1 = —0.1, A = 2. Solid line: solution
given by HAM; circle: exact solution in terms of Jacobi elliptic sine function.

expressed by cosine series at 15th order of approximation with the exact one in termshafitkénd of Jacobi
elliptic function, in case of = 1, u = 0.1, h = —11. In this case, the wave velocitygiven by HAM is 0.167473,
which is the same as the exact value.

In this paper, we compared our analytic solutions with the exact ones. However, there are cases where we can not
find the later. If so, we can substitute the solutions given by HAM into the equations considered and evaluate the errors
to check the convergence of the solutiofig. 5shows the error oEq. (23, incase ofy =1, u = 0.1, h = —11.

It is seen thaff (9) can be well approximated by the analytic solutions given by HAM.
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Fig. 3. Solution off(6) under 20th order of approximation, compared with the exact one in cased, 1 = 0.1, h = —2. Solid line: solution
given by HAM; circle: exact solution in terms of Jacobi elliptic cosine function.
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Fig. 4. Solution off (6) under 15th order of approximation, compared with the exactone in case df, © = 0.1, h = —11. Solid line: solution
given by HAM; circle: exact solution in terms of the third kind of Jacobi elliptic function.

It should be pointed out that, although few caseg ahdu are illustrated in this paper, our analytic solutions
are uniformly valid for most of, and i, which is ensured by the parameterin addition, this paper shows the
comparisons of our analytic solutions with the exact ones in terms of Jacobi elliptic sine function, Jacobi elliptic
cosine function, and the third kind of Jacobi elliptic function. However, the mKd\(Bdpas also solutions in terms
of Jacobi elliptic cs functioff8,9], which has singularities and can not be approximated by the method described in
this paper.
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Fig. 5. Error evaluated by substituting our analytic solutiong @) under 15th order of approximation inkx. (23, in case ofy =1, u =
0.1, A= —11.
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4. Conclusions

In this paper, we applied the Homotopy Analysis Method (HA) to give the analytic periodic wave solutions
to the mKdV equatior{l), and verified the validity of the solutions by comparisons with the exact ones in terms
of Jacobi elliptic functions[8,9]). This indicates that the Homotopy Analysis Method is valid for nonlinear wave
problems with periodic solutions.
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