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Abstract

An analytic technique, namely the Homotopy Analysis Method (HAM), is applied to solve the nonlinear mKdV equation.
Solutions for periodic waves are given and compared with the exact ones, which shows the validity of the HAM for the nonlinear
periodic wave problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Homotopy Analysis Method (HAM[1]) is an analytic technique for nonlinear problems. This method has been
successfully applied to many nonlinear problems in engineering and science, such as the magnetohydrodynamic
flows of non-Newtonian fluids over a stretching sheet[2], nonlinear progressive waves in deep water[3], free
oscillations of positively damped systems with algebraically decaying amplitude[4], free oscillations of self-
excited systems[5], similarity boundary layer equations[6]. All of these successful applications verified the validity,
effectiveness and flexibility of the HAM. For more details, we refer the reader to Liao[1,7].

In this paper, we apply the HAM to the mKdV equation

ut + αu2ux + βuxxx = 0, (1)

which describes the motions of waves in nonlinear optics, plasma or fluids. Periodic solutions for this equation are
given and verified by the exact ones in terms of Jacobi elliptic function[8,9]. The validity and effectiveness of the
HAM in solving the nonlinear periodic wave problems are shown.
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2. Mathematical formulation

Consider the travelling wave solutions ofEq. (1). Under the transformation

u(x, t) = Af (θ), θ = kx− ωt, (2)

whereA is the wave amplitude,k the wave number, andω the angular frequency, the mKdVEq. (1) becomes

−cf ′ + γf 2f ′ + µf ′′′ = 0, (3)

where primes denote derivatives with respect toθ, and

c = ω
k
, γ = αA2, µ = βk2. (4)

In this section, we will give analytic solutions toEq. (3) by means of HAM.
Due to the periodicity of the problem, the solutionf (θ) of Eq. (3) can be expressed by the Fourier Sine Series, if

f (θ) is an odd function, or by the Fourier Cosine Series, iff (θ) is an even function. This provides us with the Rule
of Solution Expression (RSE), which is the cornerstone of the HAM, and will be discussed respectively.

2.1. Solution expressed by Sine Series

In this case, the solution can be expressed by

f (θ) =
+∞∑
m=1

am sin(mθ), (5)

wheream (m = 1,2, . . . ,+∞) are coefficients. This provides us with the Rule of Solution Expression. Choosing
f0(θ) = sinθ as the initial guess off (θ), and

L[φ(θ, q)] = ∂
3φ(θ, q)

∂θ3
+ ∂φ(θ, q)

∂θ
(6)

as the auxiliary linear operator, we construct the zeroth order deformation equation

(1 − q)L[F (θ, q) − f0(θ)] = qhN[F (θ, q), C(q)], (7)

whereq is an embedding parameter,h a non-zero auxiliary parameter, and

N[F (θ, q), C(q)] = −C(q)F ′(θ, q) + γF2(θ, q)F ′(θ, q) + µF ′′′(θ, q), (8)

where primes denote derivatives with respect toθ. It is seen fromEq. (7) that as the parameterq increases from
0 to 1, the solutionF (θ, q) varies fromf0(θ) to f (θ), so does theC(q) from c0, the initial guess ofc, to c. If this
continuous variation is smooth enough, the Maclaurin’s series with respect toq can be constructed forF (θ, q) and
C(q) respectively, and further, if these two series are convergent atq = 1, we then have

f (θ) = f0(θ) +
+∞∑
m=1

fm(θ), (9)

c = c0 +
+∞∑
m=1

cm, (10)
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where

fm(θ) = 1

m!

∂mF (θ, q)

∂qm

∣∣∣∣
q=0
, (11)

cm = 1

m!

∂mC(q)

∂qm

∣∣∣∣
q=0
, (12)

are called themth order deformation derivatives.
DifferentiatingEq. (7)m times with respect toq then settingq = 0 and finally dividing them bym!, we gain the

mth order deformation equations forfm(θ)

L[fm(θ) − χmfm−1(θ)] = �Rm(θ), m ≥ 1, (13)

where

Rm(θ) = 1

(m− 1)!

∂m−1N[F (θ, q), C(q)]

∂qm−1

∣∣∣∣
q=0

= γ
m−1∑
n=0

(
n∑
k=0

fk(θ)fn−k(θ)

)
f ′
m−1−n(θ) −

m−1∑
n=0

cnf
′
m−1−n(θ) + βf ′′′

m−1(θ), (14)

and

χm =
{

1, m > 1,
0, m = 1.

(15)

It should be emphasized thatRm(θ) is function offk(θ) andck, wherek = 0,1,2, . . . , m− 1. They are known
when solvingfm(θ), except forcm−1. Furthermore,Rm(θ) can be expressed by

Rm(θ) =
m+1∑
n=1

ξm,n cos[(2n− 1)θ], (16)

whereξm,n is a coefficient. Due to the Rule of Solution Expression(5), the solution ofEq. (13) shouldnotcontain
the so-called secular termθ cosθ. To ensure this,Rm(θ) should not contain the term cosθ, i.e. the coefficient of
cosθ must be zero. This leads to an algebraic equation

ξm,1 = 0, (17)

which can be used to determinecm−1.
The general solution ofEq. (13) is

fm(θ) = −h
m+1∑
n=2

ξm,n

4n(n− 1)(2n− 1)
sin[(2n− 1)θ] + χmfm−1(θ) + C1 + C2 cosθ + C3 sinθ, (18)

whereC1, C2, andC3 are the integral constants. According to the Rule of Solution Expression(5), we have

C1 = C2 = 0. (19)

To ensure the amplitude off (θ) to be 1, we demand

fm( 1
2π) − fm( 3

2π) = 0, (20)
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which determines the constantC3. We solveEqs. (13) and (17) for m = 1,2,3, . . ., successively, and at theMth
order approximation we have the analytic solution

f (θ) ≈
M∑
m=0

fm(θ), (21)

c ≈
M∑
m=0

cm. (22)

2.2. Solution expressed by Cosine Series

In this case, the solutionf (θ) of Eq. (3) can be expressed by the Cosine series cos(mθ), wherem =
0,1,2, . . . ,+∞. Note that,f (θ) contains a constant term, which is the main difference between this case and
the previous one. IntegratingEq. (3) once respect toθ, and letting the integral constant to be zero, we have

µf ′′ − cf + 1
3γf

3 = 0. (23)

Under the transformation

f (θ) = δ+ λg(θ), (24)

whereδ is a constant, andλ the amplitude of the periodic functionf (θ), Eq. (23) becomes

µλg′′(θ) − c[δ+ λg(θ)] + 1
3γ[δ+ λg(θ)]3 = 0, (25)

where the constant termδ, the amplitudeλ, the wave velocityc, and the periodic functiong(θ) are unknowns to be
determined under the frame of HAM. The solution of(25) can be expressed by

g(θ) =
+∞∑
m=1

bm cos(mθ), (26)

wherebm (m = 1,2, . . . ,+∞) are coefficients. This provides us with the Rule of Solution Expression. Choosing
g0(θ) = cosθ as the initial guess ofg(θ), and

L[φ(θ, q)] = ∂
2φ(θ, q)

∂θ2
+ φ(θ, q) (27)

as the linear operator, we construct the zeroth order deformation equation

(1 − q)L[G(θ, q) − g0(θ)] = �qN[G(θ, q), C(q),&(q),Λ(q)], (28)

subject to the restrictions

G(0, q) −G(π, q) = 2, (29)

&(q) +Λ(q)G(0, q) = 1, (30)

with definition

N[G(θ, q), C(q),&(q),Λ(q)] = µΛG′′ − C(&+ΛG) + 1
3γ(&+ΛG)3, (31)
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where primes denote derivatives with respect toθ. The correspondingmth order deformation equation is

L[gm(θ) − χmgm−1(θ)] = hRm(θ), (32)

subject to the restrictions

gm(0) − gm(π) = 0, (33)

δm +
m∑
n=0

λngm−n(0) = 0, (34)

for m ≥ 1, whereRm(θ) is a function ofgk(θ), ck, δk andλk (k = 0,1,2, . . . , m− 1) which are thekth order
deformation derivatives corresponding toG(θ, q),C(q),&(q) andΛ(q), respectively. Note thatRm(θ) contains three
unknowns, i.e.cm−1, δm−1, andλm−1, when solvinggm(θ).

It is found thatRm(θ) can be expressed by

Rm(θ) =
2m+1∑
n=0

ξm,n cos(nθ), (35)

whereξm,n is a coefficient. Under the Rule of Solution Expression(26), the solutiongm(θ) of Eq. (32) should not
contain the constant term and the so-called secular termθ sinθ. To ensure this,Rm(θ) should not contain the constant
term and the term cosθ, which leads to two algebraic equations

ξm,0 = 0, ξm,1 = 0, (36)

to determinecm−1, δm−1 andλm−1 with the aid ofEq. (34). Whenm = 1, this set of algebraic equations is

1
3γδ

2
0 + 1

2γλ
2
0 − c0 = 0, (37)

1
4γλ

2
0 + γδ20 − c0 − µ = 0, (38)

λ0 + δ0 = 1, (39)

which is nonlinear, and from which we get

c0 = 1
5(11γ + 10µ− 4

√
6γ2 + 15γµ), (40)

δ0 = 1
5(−3 + 2

√
6 + 15µ/γ), (41)

λ0 = 2
5(4 − √

6 + 15µ/γ), (42)

as the initial guess ofc, δ andλ. However, this set of algebraic equations is always linear whenm ≥ 2, and can be
solved easily.

The general solution ofEq. (32) is

gm(θ) = −�
2m+1∑
n=2

ξm,n cos(nθ)

n2 − 1
+ χmfm−1(θ) + C1 sinθ + C2 cosθ, (43)

whereC1, C2 are the integral constants. According to the Rule of Solution expression(26), we haveC1 = 0. The
constantC2 is determined by(33). In this way, we getgm(θ), cm−1, δm−1 andλm−1 form = 1,2,3, . . ., successively,
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and at theMth order approximation, we have the analytic solutions ofEq. (23):

f (θ) = δ+ λg(θ) ≈
M∑
m=0

δm +
(
M∑
m=0

λm

)(
M∑
m=0

gm(θ)

)
, (44)

c ≈
M∑
m=0

cm. (45)

3. Validation of the solutions

The procedure described above can be realized easily with the aid of symbol calculation software, such as
MATHEMATICA. In this section, we verify our analytic solutions with the exact ones in terms of Jacobi elliptic
functions[8,9].

In the frame of HAM, the periodic solution is expressed as a series of sine or cosine functions. Note that our
solution series contains the parameter�, which provides us with a simply way to adjust and control the convergence
of the solution series. In general, by means of the so-called�-curve, it is straightforward to choose an appropriate
range for� which ensures the convergence of the solution series.Fig. 1 shows the wave velocity under different
�, compared with the exact value 1.6682, in case ofγ = 5 andµ = −0.1. It is seen that convergent results can be
obtained when 1< � < 3. Thus, we can choose an appropriate value for� in this range to get convergent solution
of the wave velocity. When� = 2, our solution ofc is 1.66866, which is very close to the exact value. In this case,
our analytic solution off (θ) expressed by sine series agrees well with the exact one in terms of Jacobi ellipticsine
function, as shown inFig. 2. Note that, whenγ = 5 andµ = −0.1, the modulus of the solution expressed by Jacobi
elliptic sine functions is 0.999083, which means the wave tends to a solitary wave[8,9].

Fig. 3 shows the 20th order of approximation off (θ) expressed by sine series, comparing with the exact one
in terms of Jacobi ellipticcosinefunction, in case ofγ = 5,µ = 0.1 andh = −2. In this case, the wave velocity
given by HAM is 0.831337, also agrees well with the exact value 0.831803.Fig. 4compares the analytic solution

Fig. 1. Wave velocityc under 20th order of approximation with different�, compared with the exact value 1.6682, in case ofγ = 5, µ = −0.1.
Solid line: solution given by HAM; dotted line: exact value.
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Fig. 2. Solution off (θ) under 20th order of approximation, compared with the exact one in case ofγ = 5, µ = −0.1,� = 2. Solid line: solution
given by HAM; circle: exact solution in terms of Jacobi elliptic sine function.

expressed by cosine series at 15th order of approximation with the exact one in terms of thethird kind of Jacobi
elliptic function, in case ofγ = 1,µ = 0.1,� = −11. In this case, the wave velocityc given by HAM is 0.167473,
which is the same as the exact value.

In this paper, we compared our analytic solutions with the exact ones. However, there are cases where we can not
find the later. If so, we can substitute the solutions given by HAM into the equations considered and evaluate the errors
to check the convergence of the solutions.Fig. 5shows the error ofEq. (23), in case ofγ = 1, µ = 0.1, � = −11.
It is seen thatf (θ) can be well approximated by the analytic solutions given by HAM.

Fig. 3. Solution off (θ) under 20th order of approximation, compared with the exact one in case ofγ = 5, µ = 0.1,� = −2. Solid line: solution
given by HAM; circle: exact solution in terms of Jacobi elliptic cosine function.
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Fig. 4. Solution off (θ) under 15th order of approximation, compared with the exact one in case ofγ = 1, µ = 0.1,� = −11. Solid line: solution
given by HAM; circle: exact solution in terms of the third kind of Jacobi elliptic function.

It should be pointed out that, although few cases ofγ andµ are illustrated in this paper, our analytic solutions
are uniformly valid for most ofγ andµ, which is ensured by the parameter�. In addition, this paper shows the
comparisons of our analytic solutions with the exact ones in terms of Jacobi elliptic sine function, Jacobi elliptic
cosine function, and the third kind of Jacobi elliptic function. However, the mKdV Eq.(1) has also solutions in terms
of Jacobi elliptic cs function[8,9], which has singularities and can not be approximated by the method described in
this paper.

Fig. 5. Error evaluated by substituting our analytic solutions off (θ) under 15th order of approximation intoEq. (23), in case ofγ = 1, µ =
0.1,� = −11.
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4. Conclusions

In this paper, we applied the Homotopy Analysis Method (HAM[1]) to give the analytic periodic wave solutions
to the mKdV equation(1), and verified the validity of the solutions by comparisons with the exact ones in terms
of Jacobi elliptic functions ([8,9]). This indicates that the Homotopy Analysis Method is valid for nonlinear wave
problems with periodic solutions.
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