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In this paper, a one-step optimal approach is proposed to improve the computational effi-
ciency of the homotopy analysis method (HAM) for nonlinear problems. A generalized
homotopy equation is first expressed by means of a unknown embedding function in Tay-
lor series, whose coefficient is then determined one by minimizing the square residual
error of the governing equation. Since at each order of approximation, only one algebraic
equation with one unknown variable is solved, the computational efficiency is significantly
improved, especially for high-order approximations. Some examples are used to illustrate
the validity of this one-step optimal approach, which indicate that convergent series solu-
tion can be obtained by the optimal homotopy analysis method with much less CPU time.
Using this one-step optimal approach, the homotopy analysis method might be applied to
solve rather complicated differential equations with strong nonlinearity.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The homotopy analysis method (HAM) [1–6] was proposed to get analytic approximations of highly nonlinear equations.
The homotopy is a basic concept in topology, and has been widely applied in pure mathematics and numerical algorithms. In
1992, Liao [1] first used the concept of homotopy to obtain analytic approximations of nonlinear equations N½uðrÞ� ¼ 0 by
means of constructing a one-parameter family of equations (called the zeroth-order deformation equation)
ð1� qÞL½/ðr; qÞ � u0ðrÞ� ¼ qN /ðr; qÞ½ �; ð1Þ
where q 2 ½0; 1� is an embedding parameter, N is a nonlinear operator, u(r) is a unknown function, u0ðrÞ is a guess approx-
imation, r denotes independent variable(s), respectively. Obviously, we have /ðr; 0Þ ¼ u0ðrÞ when q ¼ 0, and /ðr; 1Þ ¼ uðrÞ
when q ¼ 1, respectively. The Taylor series of /ðr; qÞ with respect to the embedding parameter q reads
/ðr; qÞ ¼ u0ðrÞ þ
Xþ1
m¼1

umðrÞqm; ð2Þ
where
umðrÞ ¼
1

m!

@m/ðr; qÞ
@qm

����
q¼0
: ð3Þ
. All rights reserved.
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Assuming that the Taylor series (2) is convergent at q ¼ 1, we have the series solution
Please
mun N
uðrÞ ¼ u0ðrÞ þ
Xþ1
m¼1

umðrÞ: ð4Þ
However, the above approach breaks down if the Taylor series (2) diverges at q ¼ 1.
To overcome this disadvantage, Liao [3] introduced in 1997 a nonzero auxiliary parameter �h, which is now called the con-

vergence-control parameter [6], to construct such a two-parameter family of equations (i.e. the zeroth-order deformation
equation)
ð1� qÞL½/ðr; qÞ � u0ðrÞ� ¼ �hqN½/ðr; qÞ�: ð5Þ
Note that the solution /ðr; qÞ of the above equation is not only dependent upon the embedding parameter q but also the
convergence-control parameter �h. So, the term um given by (3) is also dependent upon �h and therefore the convergence re-
gion of the Taylor series (2) is influenced by �h. Thus, the auxiliary parameter �h provides us a convenient way to ensure the
convergence of the Taylor series (2) at q ¼ 1, as illustrated in [3]. The introduction of the convergence-control parameter �h
greatly improves the homotopy analysis method in theory, as shown by Liao and Tan [5], Abbasbandy [7], Sajid and Hayat
[8], and Liang and Jeffrey [9].

In 1999, Liao [4] further generalized the homotopy analysis method by constructing such a zeroth-order deformation
equation
½ð1� BðqÞ�L½/ðr; qÞ � u0ðrÞ� ¼ �hAðqÞN½/ðr; qÞ�; ð6Þ
where A(q) and B(q) are two analytic functions satisfying
Að0Þ ¼ Bð0Þ ¼ 0; Að1Þ ¼ Bð1Þ ¼ 1: ð7Þ
Obviously, q is only a special case of A(q) and B(q), thus Eq. (5) is only a special case of Eq. (6). The Taylor series of A(q) and
B(q) read
AðqÞ ¼
Xþ1
m¼1

amqm; BðqÞ ¼
Xþ1
m¼1

bmqm;
which are assumed to be convergent at q ¼ 1, i.e.
Xþ1
m¼1

am ¼
Xþ1
m¼1

bm ¼ 1:
Define the two vectors
~a ¼ fa1;a2;a3; . . .g; ~b ¼ fb1; b2; b3; . . .g:
Now, the solution /ðr; qÞ of Eq. (6) is not only dependent upon the convergence-control parameter �h but also the two vectors
~a and ~b. Thus, the generalized zeroth-order deformation equation (6) provides us greater freedom, or in other words, more
possibility, to ensure the convergence of the Taylor series (2) at q ¼ 1. This is the reason why ~a and~b are called the conver-
gence-control vectors [6].

So, unlike perturbation techniques or other nonperturbation techniques, the HAM provides a convenient way to control
the convergence of the series solutions by means of the so-called convergence-control parameter �h and the convergence-
control vectors ~a and~b. Traditionally, the convergence-control parameter �h is determined by plotting the so-called �h-curve,
as suggested by Liao [2–4]. The main idea is to draw a curve of a certain quantity (mostly with physical meanings) versus �h,
from which an interval of �h which guarantees the convergence of the solution is identified. Because the convergence-control
parameter �h is an auxiliary parameter which has no physical meanings, all of the convergence series given by the HAM with
different possible values of �h tend to the same solution of a given equation, as proved by Liao [4] in general. Obviously, all of
these possible values of �h construct a set R�h for the convergence-control parameters, and using any �h 2 R�h one can get a
convergent series solution. However, the convergence rate is also dependent upon �h but the so-called �h-curve approach
can not give the ‘‘optimal” value of �h in R�h.

In 2007, Yabushita et al. [10] suggested an ‘‘optimization method” for convergence-control parameters. Their approach is
based on the square residual error
Dð�hÞ ¼
Z

X
N

XM

k¼0

ukðrÞ
" # !2

dX
of a nonlinear equation N½uðrÞ� ¼ 0, where
PM

k¼0ukðrÞ gives the Mth-order HAM approximation. Obviously, Dð�hÞ ! 0 (as
M ! þ1) corresponds to a convergent series solution. For given order M of approximation, the optimal value of �h is given
by a nonlinear algebraic equation
dDð�hÞ
d�h

¼ 0: ð8Þ
cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
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In case of two coupled nonlinear equations (as seen in [10])
Please
mun N
N1½u;v � ¼ 0; N2½u;v � ¼ 0;
there may exist two convergence-control parameters �h1 and �h2. In this case, one can define the square residual error
Dð�h1; �h2Þ ¼
X2

j¼1

Z
X

Nj

XM

k¼0

uk;
XM

k¼0

vk

" # !2

dX
and then gets the optimal �h1 and �h2 by solving two nonlinear algebraic equations
@Dð�h1; �h2Þ
@�h1

¼ 0;
@Dð�h1; �h2Þ

@�h2
¼ 0; ð9Þ
as shown by Yabushita et al. [10]. It is straightforward to use this approach to n ðn P 1Þ coupled nonlinear differential
equations.

Although the general zeroth-order deformation Eq. (6) was published 10 years ago and even more generalized form was
reported [6], most users of the HAM applied Eq. (5), mainly due to its simplicity. Currently, Wu and Chueng [11] employed a
special case AðqÞ ¼ q and BðqÞ ¼ xqþ ð1�xÞq2, and determined the optimal values of the convergence-control parameters �h
and x by considering the contour lines of a physical quantity versus �h and x. Wu and Chueng’s optimization approach is in
principle the same as that suggested by Yabushita et al. [10]. Currently, Wu and Chueng developed a two-parameter iterative
approach based on the HAM [12]. Unlike Yabushita et al. [10] who used Eq. (5), Marinca et al. [13,14] employed such a
homotopy equation
½ð1� qÞL½/ðr; qÞ � u0ðrÞ� ¼ HðqÞN /ðr; qÞ½ �; ð10Þ
where
HðqÞ ¼
Xþ1
k¼1

hkqk
is a convergent power series but Hð1Þ ¼ 1 is unnecessary. Obviously, Eq. (10) is a special case of Eq. (6) with the relationship
BðqÞ ¼ q and HðqÞ ¼ �hAðqÞ, i.e. hk ¼ �hak. Like Yabushita et al. [10], Marinca et al. [13,14] determined the optimal values of the
convergence-control parameters h1; h2; h3; . . . ; hM by minimizing the square residual error Dðh1; h2; h3; . . . ; hMÞ at a given
order M of approximation in such a way
@Dðh1;h2;h3; . . . ;hMÞ
@hk

¼ 0; 1 6 k 6 M; ð11Þ
which leads to a set of M coupled nonlinear algebraic equations. Note that, although the above approach is named the ‘‘opti-
mal homotopy asymptotic method”, it is in principle in the frame of the homotopy analysis method.

Marinca’s approach [13,14] is an important improvement of the HAM. However, using Marinca’s approach [13,14], one
had to solve a set of coupled nonlinear algebraic equations for the unknown convergence-control parameters
h1; h2; h3; . . . ; hM . Obviously, if the order M of approximation is low, it is not difficult to solve such a set of nonlinear equa-
tions. However, as M increases, it becomes more and more difficult to solve it, and besides the necessary CPU time increases
exponentially, as shown later in this paper.

To overcome this disadvantage of Marinca’s approach [13,14], we present here an approach to determine the conver-
gence-control parameters, which is efficient even for high-order M of approximation. Different from Marinca’s approach
[13,14] which solves a set of M coupled nonlinear algebraic equations for M unknown convergence-control parameters
h1; h2; h3; . . . ; hM as a whole, we minimize the square residual error of governing equations at each order so as to determine
the optimal convergence-control parameters one by one. In this way, we need solve only one nonlinear algebraic equation
about the unknown convergence-control parameter hm at the mth-order of approximation, where m ¼ 1; 2; 3 and so on, and
therefore it is easy to get high-order approximations with much less CPU time, as mentioned later.

The basic idea of the present approach is described in Section 2. In Section 3, three examples are employed to illustrate
the convergence, accuracy and computational efficiency of this approach, compared with Marinca’s approach [13,14] and the
traditional HAM as well. Conclusions and some discussions are given in the last section.

2. One-step optimal HAM

Consider the following equation:
N½uðrÞ� ¼ 0; ð12Þ
where N is a differential operator and uðrÞ is the unknown function of the independent variable(s) r ¼ fr1; r2; r3; . . .g. For the
sake of simplicity, we omit the corresponding boundary conditions, which can be handled in the similar way. Like Marinca’s
approach [13,14], we set HðqÞ ¼ �hAðqÞ and BðqÞ ¼ q in Liao’s Eq. (6) to construct the zeroth-order deformation equation
cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
onlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2009.08.014
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Please
mun N
ð1� qÞL½/ðr; qÞ � u0ðrÞ� ¼ HðqÞN½/ðr; qÞ�; ð13Þ
where L is an auxiliary linear operator, u0ðrÞ an initial approximation of uðrÞ; q 2 ½0; 1� is the embedding parameter, and
HðqÞ is called the convergence-control function satisfying Hð0Þ ¼ 0 and Hð1Þ– 0.

From Eq. (13), we have
/ðr; 0Þ ¼ u0ðrÞ; /ðr; 1Þ ¼ uðrÞ ð14Þ
when q ¼ 0 and q ¼ 1, respectively. Thus, as the embedding parameter q increases from 0 to 1, /ðr; qÞ varies (or deforms)
from the initial approximation u0ðrÞ to the solution uðrÞ of the original Eq. (12). Expand /ðr; qÞ and the convergence-control
function HðqÞ in Maclaurin’s series as
/ðr; qÞ ¼
Xþ1
m¼0

umðrÞqm; HðqÞ ¼
Xþ1
k¼0

hkqk; ð15Þ
where
umðrÞ ¼
1

m!

@m/ðr; qÞ
@qm

����
q¼0
; hk ¼

1
m!

@mHðqÞ
@qm

����
q¼0
: ð16Þ
Assuming that the two series in Eq. (15) are convergent at q ¼ 1, we have, due to Eq. (14), that
uðrÞ ¼ u0ðrÞ þ
Xþ1
m¼1

umðrÞ: ð17Þ
As suggested by Liao [3,4], differentiating the zeroth-order deformation equation (12) m times with respect to the embed-
ding parameter q, then dividing it by m! and finally setting q ¼ 0, we gain the so-called mth-order deformation equation for
the unknown umðrÞ:
L umðrÞ � vmum�1ðrÞ
� �

¼
Xm

k¼1

hkRm�kðrÞ; ð18Þ
where
RnðrÞ ¼
1
n!

@nN½/ðr; qÞ�
@qn

����
q¼0
; ð19Þ
and
vm ¼
0; when m 6 1;
1; when m > 1:

�
ð20Þ
For details, please refer to Liao [4].
The nth-order approximation of the solution u(r) can be expressed as
~unðrÞ ¼ u0ðrÞ þ
Xn

k¼1

ukðrÞ; ð21Þ
which is mathematically dependent upon the convergence-control parameter vector hn ¼ fh1; h2; . . . ; hng. Let
DnðhnÞ ¼
Z

X
ðN½~unðrÞ�Þ2 dX
denote the square residual error of the governing equation (12) at the nth-order of approximation, where n ¼ 1; 2; 3 and so
on. At the 1st-order of approximation, the square residual error D1 is only dependent upon h1 and thus we can gain the ‘‘opti-
mal” value of h1 by solving the nonlinear algebraic equation
dD1

dh1
¼ 0:
At the 2nd-order of approximation, the square residual error D2ðh1;h2Þ is a function of both of h1 and h2. Because h1 is known,
we can gain the ‘‘optimal” value of h2 by solving one nonlinear algebraic equation
dD2

dh2
¼ 0:
Similarly, at the nth-order of approximation, the square residual error Dn contains only one unknown convergence-control
parameter hn, whose ‘‘optimal” value is determined by a nonlinear algebraic equation
dDn

dhn
¼ 0; n P 1:
cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
onlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2009.08.014
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In this way, we can get accurate results at rather high-order of approximation. It may be expected that our one-step optimal
HAM approach is computationally more efficient than Marinca’s approach, since we need solve a nonlinear algebraic equa-
tion with only one unknown convergence-control parameter.

Noth that in previous applications of the HAM, HðqÞ ¼ �hq is mostly used, and �h is chosen by plotting the so-called �h-
curves. In this case, the square residual error Dn at a given order n of approximation is a function of �h, and the ‘‘optimal” value
of the convergence-control parameter �h is given by
Please
mun N
dDn

d�h
¼ 0:
This traditional approach is compared with our approach in the following section.

3. Some examples

In this section, three differential equations are employed to illustrate the validity of our one-step optimal HAM approach
described in Section 2. The convergence, accuracy and efficiency of this optimization approach are investigated by comparing
it with the traditional HAM approach and Marinca’s approach [13,14]. The code is developed using symbolic computation
software MATHEMATICA and the calculations are implemented on a PC with 2 GB RAM and 3 GHz CPU.

3.1. Example 1

First, consider a linear differential equation [15]:
u00ðtÞ þ tu0ðtÞ � uðtÞ ¼ f ðtÞ; t 2 ½�1;1�; ð22Þ
subject to the boundary conditions
uð�1Þ ¼ expð�5Þ þ sinð1Þ; uð1Þ ¼ expð5Þ þ sinð1Þ; ð23Þ
where
f ðtÞ ¼ ð24þ 5tÞ expð5tÞ þ ð2þ 2t2Þ cos t2 � ð4t2 þ 1Þ sin t2: ð24Þ
The exact solution of (22) and (23) reads
uðtÞ ¼ expð5tÞ þ sinðt2Þ: ð25Þ
Since u(t) is defined in a finite domain [�1,1], the solution of u(t) can be expressed by the power series in t. Then, we can
choose the auxiliary linear operator LuðtÞ ¼ u00ðtÞ and the initial approximation
u0ðtÞ ¼
expð5Þ þ expð�5Þ

2
þ expð5Þ � expð�5Þ

2

� �
t þ sinð1Þ: ð26Þ
The right-hand side of Eq. (22) contains exponential and trigonometric functions which are not in the form of power series in
t. So, we first expand it into Chebyshev’s orthogonal polynomials as
f ðtÞ � C0

2
þ
XK

k¼1

CkTkðtÞ; ð27Þ
where K is the order of the series, and
Ck ¼
2
p

Z 1

�1

f ðtÞTkðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dx; k ¼ 0;1; . . . ; ð28Þ

TkðtÞ ¼ cosðk arccosðtÞÞ; jtj 6 1: ð29Þ
The 15th order Chebyshev’s polynomial expansion of f(t) is given by
f ðtÞ � 26þ 125t þ 326:002t2 þ 562:502t3 þ 724:133t4 þ 755:187t5 þ 650:478t6 þ 480:665t7 þ 309:723t8

þ 177:175t9 þ 93:7633t10 þ 43:6294t11 þ 15:8078t12 þ 6:40274t13 þ 4:1018t14 þ 1:36634t15: ð30Þ
The Mth-order approximation is given by
~uMðtÞ � u0ðtÞ þ
XM

k¼1

ukðtÞ;
where umðtÞ is determined by the mth-order deformation equation
L½umðtÞ � vmum�1ðtÞ� ¼
Xm

k¼1

hkRm�kðtÞ; ð31Þ
cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
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Table 1
Comparison of Dn and CPU time (seconds) given by one-step optimal HAM and the traditional HAM for Example 1.

One-step optimal HAM Traditional HAM

Order n hn Dn CPU (s) �h Dn CPU (s)

1 �8.2515E�1 12242 0.125 �0.82515 12242 0.291
2 �1.8218E�2 884.6 0.266 �0.77697 1250 0.359
3 4.1013E�3 5.58 0.421 �0.75933 9.94 0.827
4 �1.1324E�4 1.12 0.561 �0.75117 1.01 1.264
5 �1.9777E�4 2.28E�1 0.765 �0.74752 1.43E�2 2.131
6 6.7750E�5 2.75E�3 0.905 �0.75094 1.10E�3 3.219
7 �2.6473E�6 8.51E�4 1.061 �0.75089 5.93E�5 4.536
8 �5.6510E�6 2.48E�4 1.233 �0.74128 1.84E�6 5.832
9 2.0488E�6 2.48E�6 1.513 �0.70904 4.24E�7 7.304
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subject to boundary conditions
Table 2
hM ;DM

M

h1

h2

h3

h4

h5

h6

DM

CPU

Please
mun N
umð�1Þ ¼ 0; umð1Þ ¼ 0; ð32Þ
where
RkðtÞ ¼ u00kðtÞ þ tu0kðtÞ � ukðtÞ � ð1� vkþ1Þf ðtÞ: ð33Þ
The square residual error at the Mth-order of approximation is defined by
DM ¼
Z 1

�1
½~u00MðtÞ þ t~u0MðtÞ � ~uMðtÞ � f ðtÞ�2 dt: ð34Þ
It is found that
D1 ¼ 1:9259� 106 þ 4:6384� 106h1 þ 2:81066� 106h2
1; ð35Þ

D2 ¼ 1:9259� 106 þ 9:2769� 106h1 þ 1:6943� 107h2
1 þ 1:3925� 107h3

1 þ 4:3537� 106h4
1

þ 4:6384� 106h2 þ 1:1242� 107h1h2 þ 6:9628� 106h2
1h2 þ 2:8106� 106h2

2; ð36Þ
and so on. Note that Dn contains n convergence-control parameters h1; h2; h3; . . . ; hn. Our approach gives the ‘‘optimal” value
of the first convergence-control parameter h1 by solving the equation dD1=dh1 ¼ 0, which leads to h1 ¼ �0:82515 with the
corresponding minimum square residual error D1 ¼ 12241. Then, D2 is only dependent upon h2 since h1 is regarded as
known. Thus, we obtain the ‘‘optimal” value of h2 by solving the algebraic equation dD2=dh2 ¼ 0, which gives
h2 ¼ �0:018218 with the corresponding minimum square residual error D2 ¼ 884:64. In this way, we gain the ‘‘optimal” va-
lue of the convergence-control parameters h1; h2; h3; . . ., one by one, until the accurate enough approximation is obtained.

The comparison of the traditional HAM and the one-step optimal approach is given in Table 1. For both approaches, the
square residual error Dn decreases quickly as the order of approximation increases. However, the one-step optimal approach
needs less CPU time than the traditional HAM approach which first regards the unique convergence-control parameter �h as
unknown and then gives its optimal value by minimizing the square residual error. This is mainly because, containing a un-
known convergence-control parameter �h, the expression of umðtÞ becomes more and more complicated as m increases, and
thus more and more CPU time is needed to solve the corresponding high-order deformation equations. Thus, since Marinca’s
optimization approach [13,14] contains more unknown convergence-control parameters, it needs even more CPU times,
especially for high-order approximations, as shown in Table 2 and Fig. 1. For example, at the 8th-order of approximation,
Marinca’s approach needs 1194 times more CPU time than the traditional HAM, and even 5651 times more CPU time than
the one-step optimal approach, as shown in Table 3.
and CPU time (seconds) at different order M of approximations given by Marinca’s approach for Example 1.

1 2 3 4 5 6

�0.8252 �0.7359 �0.8048 �0.8051 �0.8436 �0.8436
/ �2.415E�2 �1.810E�2 �1.142E�2 �1.572E�2 �1.572E�2
/ / 3.371E�3 1.925E�3 1.739E�3 1.720E�3
/ / / �1.921E�4 �3.003E�4 �2.401E�4
/ / / / 2.942E�5 �9.932E�5
/ / / / / 9.7917E�6

1:22� 104 78.6 0.224 6.82E�03 8.49E�05 2.91E�05

0.144 0.608 2.17 9.19 37.5 245.2

cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
onlinear Sci Numer Simulat (2009), doi:10.1016/j.cnsns.2009.08.014
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Fig. 1. Comparison of CPU time of different approaches for Example 1.

Table 3
Comparison of CPU time (seconds) of different approaches for Example 1.

Order M One-step optimal HAM Traditional HAM Marinca’s approach

1 0.125 0.291 0.144
2 0.266 0.359 0.608
3 0.421 0.827 2.17
4 0.561 1.264 9.19
5 0.765 2.131 37.5
6 0.905 3.219 245.2
7 1.061 4.536 1817.5
8 1.233 5.832 6969.5
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Note that, at high-order approximations, the square residual error given by the traditional optimization approach decays
more quickly than our one-step optimal approach, as shown in Table 1. And square residual errors given by Marinca’s ap-
proach decays even faster than the traditional optimal HAM approach, as shown in Table 2. Note that, the square residual
error at the 9th-order approximation given by one-step optimal approach with only 1.513 s CPU time is less than that at
the 6th-order approximation by Marinca’s approach with 245.2 s CPU time. Thus, our one-step optimal approach is much
more efficient than Marinca’s approach.

3.2. Example 2

Then, let us consider a nonlinear differential equation [16]:
Please
mun N
u00ðtÞ � uðtÞu00ðtÞ � u0ðtÞ2

2
� 1

2
¼ 0; ð37Þ
subject to boundary conditions
uð0Þ ¼ 0; uð1Þ ¼ �1=2: ð38Þ
Similarly, we choose the initial approximation
u0ðtÞ ¼ �
t
2
; ð39Þ
which satisfies the boundary conditions (38), and the same auxiliary linear operator as that in Example 1. The mth-order
deformation equation reads
L½umðtÞ � vmum�1ðtÞ� ¼
Xm

k¼1

hkRm�kðtÞ; ð40Þ
cite this article in press as: Niu Z, Wang C. A one-step optimal homotopy analysis method for nonlinear differential equations. Com-
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Table 4
Comparison of Dn and CPU time (seconds) given by one-step optimal HAM and the traditional HAM for Example 2.

One-step optimal HAM Traditional HAM

Order n hn Dn CPU �h Dn CPU

1 �7.4849E-1 1.94E-2 0.078 �0.74849 1.94E-2 0.125
2 �1.2724E-3 1.75E-3 0.187 �0.77608 1.66E-3 0.234
3 �3.7716E-4 1.25E-4 0.328 �0.78472 9.69E-5 0.500
4 �4.8188E-4 8.57E-6 0.375 �0.78695 5.89E-6 0.515
5 �9.7056E-5 5.72E-7 0.516 �0.78566 3.70E-7 1.203
6 �1.9365E-6 3.84E-8 0.625 �0.78131 2.85E-8 1.234
7 1.8106E-6 2.72E-9 0.796 �0.77855 2.15E-9 1.818
8 2.7190E-7 2.01E-10 0.906 �0.77205 1.75E-10 2.640
9 5.3089E-8 1.52E-11 1.125 �0.76910 1.44E-11 3.765

10 2.1653E-8 1.17E-12 1.281 �0.76386 1.20E-12 5.219

8 Z. Niu, C. Wang / Commun Nonlinear Sci Numer Simulat xxx (2009) xxx–xxx

ARTICLE IN PRESS
subject to boundary conditions
Table 5
hM ;DM

M

h1

h2

�h3

�h4

�h5

�h6

DM

CPU

Table 6
Compar

Orde

1
2
3
4
5
6
7

Please
mun N
umð0Þ ¼ 0; umð1Þ ¼ 0; ð41Þ
where
RnðtÞ ¼ u00nðtÞ �
Xn

j¼0

ujðtÞu00n�jðtÞ �
1
2

u0jðtÞu0n�jðtÞ
� �

� 1
2
ð1� vnþ1Þ: ð42Þ
Similarly, it is found that the square residual error given by our one-step optimal approach decays quickly as the order of
approximation increases, as shown in Table 4. Besides, less CPU time is used than the traditional HAM approach. Note that
Marinca’s approach needs much more CPU times, as shown in Tables 5 and 6, and also Fig. 2.

This example indicates that our one-step optimal approach is valid for nonlinear equations and is much more efficient
than Marinca’s approach.

3.3. Example 3

Consider the following nonlinear differential equation [16]:
u00ðtÞ � u00ðtÞuðtÞ2 � uðtÞu0ðtÞ2 ¼ 0; ð43Þ
subject to the boundary conditions
uð0Þ ¼ 0; uð1Þ ¼ a; ð44Þ
and CPU time (seconds) at different order M of approximation given by Marinca’s approach for Example 2.

1 2 3 4 5 6

�0.7485 �0.7771 �0.7854 �0.7868 �0.7873 �0.7873
/ �2.4095E-3 �3.2858E-3 1.7860E-3 3.6330E-3 5.1430E-3
/ / �4.5908E-4 �7.0998E-4 -5.4369E-4 5.1127E-4
/ / / �6.2957E-5 �5.4645E-4 5.0127E-4
/ / / / �1.3894E-5 �7.9943E-6
/ / / / / �5.4226E-7

1.95E-2 1.66E-3 9.56E-5 5.55E-6 3.08E-7 1.6931E-8
0.044 0.308 4.38 23.1 446.3 7865.09

ison of CPU time (seconds) of different approaches for Example 2.

r M One-step optimal HAM Traditional HAM Marinca’s approach

0.078 0.125 0.044
0.187 0.234 0.308
0.328 0.500 4.38
0.375 0.515 23.1
0.516 1.203 446.3
0.625 1.234 7865.09
0.796 1.818 69502.2
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Order of Approximation

C
PU

 ti
m

e 
(s
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ds
)

1 2 3 4 5 6
10-2
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100

101

102

103

104

One-step optimal HAM
Traditional HAM
Marinca’s approach

Fig. 2. Comparison of CPU time of different approaches for Example 2.
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whose exact solution is expressed in the implicit form
Table 7
Compar

One-

Orde

1
2
3
4
5
6
7
8
9

10

Please
mun N
kt ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

þ arcsin u; ð45Þ
where k ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

þ arcsin a.
We choose the initial approximation
u0ðtÞ ¼ at ð46Þ
and the same auxiliary linear operator as that in Example 1. The high-order deformation equation reads
L½umðtÞ � vmum�1ðtÞ� ¼
Xm

k¼1

hkRm�kðtÞ; ð47Þ
subject to boundary conditions
umð0Þ ¼ 0; umð1Þ ¼ 0; ð48Þ
where
RnðtÞ ¼ u00n �
Xn

j¼0

u00n�j

Xj

k¼0

ukuj�k �
Xn

j¼0

un�j

Xj

k¼0

u0ku0j�k: ð49Þ
In case of a ¼ 1=2, the square residual error given by our one-step optimal approach decays quickly the order of approxima-
tion increases, as shown in Table 7. Besides, less CPU time is needed than the traditional HAM approach. Furthermore, Mar-
inca’s approach needs much more CPU times than the traditional HAM approach and especially than one-step optimal
ison of Dn and CPU time (seconds) given by one-step optimal HAM and the traditional HAM for Example 3 in case of a ¼ 1=2.

step optimal HAM Traditional HAM

r n hn Dn CPU �h Dn CPU

�1.2072 1.62E-4 0.234 �1.2072 1.62E-4 0.171
�7.5878E-3 3.31E-6 0.406 �1.1837 3.23E-6 0.485
�1.6369E-4 8.24E-8 0.719 �1.1713 6.71E-8 1.016
�1.1022E-5 2.22E-9 1.031 �1.1648 1.38E-9 1.985
�1.9823E-7 6.06E-11 1.360 �1.1608 2.89E-11 3.515
�1.2596E-7 1.64E-12 1.781 �1.1581 6.03E-13 6.047
9.9048E-9 4.46E-14 2.172 �1.1561 1.26E-14 9.531
5.2092E-11 1.20E-15 2.640 �1.1546 2.65E-16 15.578
7.4391E-13 3.22E-17 3.156 �1.1534 5.57E-18 19.750
�9.6024E-12 8.61E-19 3.672 �1.1525 1.16E-19 34.641
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Table 8
hM ; DM and CPU time (seconds) at different order of approximation M given by Marinca’s approach for Example 3 in case of a ¼ 1=2.

M 1 2 3 4 5

h1 �1.2072 �1.1821 �1.1681 �1.1607 �1.1607
h2 / �7.8045E�3 �6.0729E�3 �5.1929E�3 �5.1929E�3
h3 / / �1.7898E�4 �1.4808E�4 �1.4812E�4
h4 / / / �1.0919E�5 �1.0909E�5
h5 / / / / 0

DM 1.62E�4 3.02E�6 5.01E�8 7.88E�10 1.2830E�11
CPU 0.112 3.50 14.9 476.7 32086.4
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approach, as shown in Tables 8 and 9, and also Fig. 3. However, in case of a ¼ 9=10, the square residual error given by the
one-step optimal approach first decays, although slowly, but then increases, as shown in Table 10. In contrast, the square
residual errors given by the traditional HAM and Marinca’s approach decay monotonously. This illustrates the weakness
of the one-step optimal approach.
4. Conclusion and discussion

Marinca et al. [13,14] proposed an approach to find the optimal convergence-control parameters in the frame of the HAM.
At a given order M of approximation, it is necessary to solve a set of coupled nonlinear algebraic equations with the M un-
known convergence-control parameters h1; h2; h2; . . . ; hM by means of Marinca’s approach. So, Marinca’s approach is time-
consuming, especially for large M, as shown in Figs. 1–3. Even worse, if an approximation at a given order M is not accurate
enough, a higher-order approximation is necessary and then a completely new set of coupled algebraic equations with more
unknowns must be solved. So, Marinca’s approach [13,14] is not efficient in practice.

To overcome this disadvantage of Marinca’s approach [13,14], we present one-step optimization approach for the conver-
gence-control parameters of the HAM. Unlike Marinca’s approach [13,14], only one algebraic equation is solved at each order
Table 9
Comparison of CPU time (seconds) of different approaches for Example 3 in case of a ¼ 1=2.

Order M One-step optimal HAM Traditional HAM Marinca’s approach

1 0.234 0.171 0.112
2 0.406 0.485 3.50
3 0.719 1.016 14.9
4 1.031 1.985 476.7
5 1.360 3.515 32086.4

Order of Approximation

C
PU

 ti
m

e 
(s

ec
on

ds
)

1 2 3 4 5
10-1

100

101

102

103

104

105

One-step optimal HAM
Traditional HAM
Marinca’s approach

Fig. 3. Comparison of CPU time of different approaches for Example 3.
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Table 10
Comparison of Dn given by one-step optimal HAM and the traditional HAM for Example 3 in case of a ¼ 9=10.

One-step optimal HAM Traditional HAM

Order n hn Dn Order n �h Dn

1 �1.0133 1.10E-1 1 �1.0133 1.10E-1
5 6.9401E-2 4.42E-2 5 �1.7029 8.89E-3

10 2.4243E-2 2.88E-2 10 �1.7046 2.31E-4
15 1.2823E-2 2.29E-2 15 �1.6997 5.72E-6
20 9.0659E-3 1.0095 20 �1.6963 1.36E-7
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of approximation, until accurate enough approximation is obtained. This approach needs much less CPU time and thus is
more efficient in practice, as shown in Figs. 1–3. Besides, our one-step optimal approach automatically determines the con-
vergence-control parameters one by one, and therefore it is easy to apply this approach to develop symbolic computation
codes for some types of nonlinear differential equations. However, it is a pity that sometimes one can not get convergent
result by means of this one-step optimal approach. This disadvantage can be overcome by using multiple-step optimal ap-
proach (like Marinca’s approach [13,14]) first, and then one-step optimal approach followed. More investigations are needed
to obtain optimal values of the convergence-control parameters in the frame of the HAM, especially when the even more
generalized zeroth-order deformation equations mentioned in [6] is considered.
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