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Derivation of the Adomian decomposition method
using the homotopy analysis method
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Abstract

Adomian decomposition method has been used intensively to solve nonlinear boundary and initial value problems. It
has been proved to be very efficient in generating series solutions of the problem under consideration under the assumption
that such series solution exits. However, very little has been done to address the mathematical foundation of the method
and its error analysis.

In this article the mathematical derivation of the method using the homotopy analysis method is presented. In addition,
an error analysis is addressed as well as the convergence criteria.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear differential equations are usually arising from mathematical modeling of many frontier physical
systems. In most cases, analytic solutions of these differential equations are very difficult to achieve. Common
analytic procedures linearize the system or assume the nonlinearities are relatively insignificant. Such proce-
dures change the actual problem to make it tractable by the conventional methods. This changes, some times
seriously, the solution. Generally, the numerical methods such as Rung–Kutta method are based on discret-
ization techniques, and they only permit us to calculate the approximate solutions for some values of time and
space variables, which causes us to overlook some important phenomena such as chaos and bifurcation, in
addition to the intensive computer time required to solve the problem. The above drawbacks of linearization
and numerical methods arise the need to search for an alternative techniques to solve the nonlinear differential
equations, namely, the analytic solution methods, such as the perturbation method, the iteration variational
method [11,13–15] and the Adomian decomposition method.

The Adomian decomposition method [1–3] is quantitative rather than qualitative, analytic, requiring nei-
ther linearization nor perturbation and continuous with no resort to discretization. It consists of splitting
the given equation into linear and nonlinear parts, inverting the highest-order derivative operator contained
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2006.12.074

E-mail address: f.allan@uaeu.ac.ae

mailto:f.allan@uaeu.ac.ae


F.M. Allan / Applied Mathematics and Computation 190 (2007) 6–14 7
in the linear operator on both sides, identifying the initial and/or boundary conditions and the terms involving
the independent variables alone as initial approximation, decomposing the unknown function into a series
whose components are to be determined, decomposing the nonlinear function in terms of special polynomials
called Adomian’s polynomials, and finding the successive terms of the series solution by recurrent relation
using Adomian polynomials.

The method has been used to derive analytical solution for nonlinear ordinary differential equations
[8,20,21,30] as well as partial differential equations [4,7,22,23,31]. A modified version of the method was used
to derive the analytic solution for partial and ordinary differential equations [34,38–40]. Application of the
method to fractional differential equations was first introduced by Shawagfeh [28,29] .Other applications of
the method in various fields of applied sciences can be found in [24,25,27,32,33,35–37].

Error analysis and convergence criteria of the method was investigated by several authors. In [9,10] Cherru-
alt investigate the convergence of the method when applied to a special class of boundary value problems. The
convergence of Adomian’s decomposition method, as applied to the special problem of periodic temperature
fields in heat conductors, was investigated in [26]. However, in [12] it was shown that ADM does not converge
in general, in particular, when the method is applied to linear operator equations. It was also shown that Ado-
mian’s decomposition method is equivalent to Picard iteration method, and therefore it might diverge.

The Homotopy Analysis Method (HAM), which was first introduced by Liao (see [16–19] and the refer-
ences therein), is another technique used to derive an analytic solution for nonlinear operators. It consists
of introducing embedding operators and embedding parameters where the solution is assumed to depend con-
tinuously on these parameters. The method has been used intensively by many authors and proved to be very
effective in deriving an analytic solution of nonlinear differential equations [8,16,17].

However, although Adomian decomposition method (ADM) has been used intensively to solve nonlinear
problems, very little is known about the theory behind this method and it’s convergence. This article is an
attempt to give a mathematical derivation of the ADM method using Homotopy analysis method (HAM).
In the next section we will give a brief description of the ADM, while in Section 3 we will give a systematic
description of the Homotopy analysis method (HAM). While in Section 4, we will give the main result of this
article which is the derivation of the ADM using HAM. Conclusion remarks are presented in Section 5.

2. Adomian decomposition method (ADM)

Adomian decomposition method (ADM) depends on decomposing the nonlinear differential equation
F ðx; yðxÞÞ ¼ 0 ð1Þ

into the two components
LðyðxÞÞ þ NðyðxÞÞ ¼ 0; ð2Þ

where L and N are the linear and the nonlinear parts of F respectively. The operator L is assumed to be an
invertible operator. Solving for L(y) leads to
LðyÞ ¼ �NðyÞ: ð3Þ

Applying the inverse operator L�1 on both sides of Eq. (3) yields
y ¼ �L�1ðNðyÞÞ þ uðxÞ; ð4Þ

where u(x) is the constant of integration satisfies the condition LðuÞ ¼ 0: Now assuming that the solution y

can be represented as infinite series of the form
y ¼
X1
n¼0

yn: ð5Þ
Furthermore, suppose that the nonlinear term N(y) can be written as infinite series in terms of the Adomian
polynomials An of the form
NðyÞ ¼
X1
n¼0

An; ð6Þ
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where the Adomian polynomials An of N(y) are evaluated using the formula [1]:
AnðxÞ ¼
1

n!

dn

dkn N
X1
n¼0

ðknynÞ
 !�����

k¼0

:

Then substituting Eqs. (5) and (6) in Eq. (4) gives
X1
n¼0

yn ¼ uðxÞ � L�1
X1
n¼0

An

 !
: ð7Þ
Then equating the terms in the linear system of Eq. (7) gives the recurrent relation
y0 ¼ uðxÞynþ1 ¼ �L�1ðAnÞ n P 09: ð8Þ

However, in practice all the terms of series (7) cannot be determined, and the solution is approximated by the
truncated series

PN
n¼0yn. This method has been proven to be very efficient in solving various types of nonlinear

boundary and initial value problems, see for examples [4–7].

3. Homotopy analysis method

In what follows, a description of the Homotopy analysis method as it appears in various literatures [16–19]
will be presented. Consider a nonlinear differential operator eN , let �h 6¼ 0 and k be complex numbers, and Ak
and Bk be two complex functions analytic in the region jkj 6 1, satisfying
Að0Þ ¼ Bð0Þ ¼ 0; Að1Þ ¼ Bð1Þ ¼ 1; ð9Þ

respectively. Besides, let
AðkÞ ¼
X1
k¼1

a1;kk
k; BðkÞ ¼

X1
k¼1

b1;kk
k ð10Þ
denote the Maclaurin’s series of Ak and Bk respectively. Because Ak and Bk are analytic in the region j k j6 1,
therefore we have
Að1Þ ¼
X1
k¼1

a1;k ¼ 1; Bð1Þ ¼
X1
k¼1

b1;k ¼ 1: ð11Þ
The above defined complex functions Ak and Bk are called the embedding functions and k is the embedding
parameter.Consider the nonlinear differential equation in general form
eN ðyðxÞÞ ¼ 0; x 2 X; ð12Þ

where eN is a differential operator, y(x) is a solution defined in the region x 2 X. To solve Eq. (12), using the
homotopy analysis method we construct the equation
½1� BðkÞ�f£½~yðx; kÞ � y0ðxÞ�g ¼ �hAðkÞ~N ½~yðx; kÞ�; ð13Þ

where £ is a properly selected auxiliary linear operator satisfying
£ð0Þ ¼ 0 ð14Þ

and �h 6¼ 0 is an auxiliary parameter, y0(x) is an initial approximation. Using the facts Að0Þ ¼ 0 and Bð0Þ ¼ 0,
Eq. (13) gives
£½~yðx; 0Þ � y0ðxÞ� ¼ 0;
or equivalently
~yðx; 0Þ ¼ y0ðxÞ: ð15Þ

Similarly, when k ¼ 1, Eq. (13) is the same as Eq. (12) so that we have
~yðx; 1Þ ¼ yðxÞ: ð16Þ
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Suppose that Eq. (12) has solution ~yðx; kÞ that converges for all 0 6 k 6 1 for properly selected �h, Ak and Bk.
Suppose further that ~yðx; kÞ is infinitely differentiable at k ¼ 0, that is
~yk
0ðxÞ ¼

ok~yðx; kÞ
okk

����
k¼0

; k ¼ 0; 1; 2; 3; . . . ; ð17Þ
exists for all k ¼ 0; 1; 2; . . . Thus as k increases from 0 to 1, the solution ~yðx; kÞ of Eq. (13) varies continuously
from the initial approximation y0(x) to the solution y(x) of the original Eq. (12). Clearly, Eq. (15) and Eq. (16)
gives an indirect relation between the initial approximation y0(x) and the general solution y(x). The homotopy
analysis method depends on finding a direct relationship between the two solutions which can be described as
follows.

Consider the Maclaurin’s series of ~yðx; kÞ about k ¼ 0
~yðx; kÞ ¼ ~yðx; 0Þ þ
X1
k¼1

o
k~yðx; kÞ
okk

����
k¼0

� �
kk

k!
: ð18Þ
Assuming that the series above converges at k ¼ 1, we have by Eqs. (15) and (16) the relationship
yðxÞ ¼ y0ðxÞ þ
X1
m¼1

ymðxÞ; ð19Þ
where
ymðxÞ ¼
~ym

0 ðxÞ
m!
¼

om~yðx;kÞ
okm

���
k¼0

m!
; m P 1: ð20Þ
To derive the governing equation of ym(x), we differentiate Eq. (12) m times with respect to k we get
Xm

k¼0

m

k

� �
dk½1� BðkÞ�

dkk

dm�k

dkm�k f£½~yðx; kÞ� � £½y0ðxÞ�g ¼ �h
Xm

k¼0

m

k

� �
dkAðkÞ

dkk

dm�k ~N ½~yðx; kÞ�
dkm�k : ð21Þ
Further dividing Eq. (21) by m! and then setting k ¼ 0, we have the so called mth-order deformation equations
£ ymðxÞ �
Xm�1

k¼1

b1;kym�kðxÞ
" #

¼ RmðxÞ; ð22Þ
where Rm(x) in fact depends on the previous calculated values of y0ðxÞ; y1ðxÞ; . . . ; ym�1ðxÞ and given by
RmðxÞ ¼ �h
Xm

k¼1

a1;khm�kðxÞ ð23Þ
and hkðxÞ are the Homotopy polynomials and given by
hkðxÞ ¼
1

k!

dk ~N ½~yðx; kÞ�
dkk

����
k¼0

: ð24Þ
It is very important to emphasize that Eq. (22) is linear. If the first (m�1)th-order approximations have
been obtained, the left hand side Rm(x) will be obtained. So, using the selected initial approximation y0(x),
we can obtain y1(x),y2(x), y3(x), . . ., one after the other in order. Therefore, according to Eq. (22), we, in fact,
convert the original nonlinear problem given by Eq. (12) into an infinite sequence of linear sub-problems
governed by Eq. (22). We emphasize that HAM provides us with great freedom and large flexibility to select
the non-zero auxiliary parameters �h, the embedding functions Ak and Bk, the initial approximation y0(x) and
the auxiliary linear operators £.

4. The mathematical derivation of the Adomian decomposition method

The Adomian decomposition method can be derived using the Homotopy analysis method using the fol-
lowing theorem:
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Theorem 1. Let the embedding operators Ak and Bk be given by
AðkÞ ¼ k and BðkÞ ¼ k ð25Þ

and let the auxiliary parameter �h ¼ �1, then
AnðxÞ ¼ hnðxÞ; ð26Þ

i.e., the HAM polynomials will be reduced to the Adomian polynomials.

Proof. Assume that the solution of Eq. (1) depends continuously on the parameter k for 0 6 k 6 1, assume
further that the solution is given by xðx; kÞ and this solution is analytic at k ¼ 0 so that
xðx; kÞ ¼
X1
k¼0

kk

k!

o
kxðx; kÞ

okk

�����
k¼0

:

With the above choice of the embedding parameters, Eq. (13) will be
½1� k�fL½xðx; kÞ� � L½ðy0Þ�g ¼ �kF ½xðx; kÞ�; ð27Þ
where the initial guess y0 is the solution of the linear operator
L½xðx; 0Þ� ¼ 0
it is clear that when k ¼ 0, the solution of Eq. (27) will be y0 and when k ¼ 1, the solution will be y(x) which is
the solution of the original nonlinear equation F ½xðx; kÞ� ¼ 0. Differentiating both sides of Eq. (27) with re-
spect to k will lead to the following relation for the HAM polynomials:
½1� k� oL½xðx; kÞ�
ok

� fL½xðx; kÞ � Lðy0Þ�g ¼ �F ½xðx; kÞ� � k
oF ½xðx; kÞ�

ok
and when k ¼ 0 we will have the equation for y1 which is
L
oxðx; kÞ

ok

����
k¼0

� �
¼ L½y1� ¼ �F ½y0� ¼ �A0; ð28Þ
or
y1ðxÞ ¼ �L�1ðA0Þ:

To derive the nth equation for the nth term of the HAM polynomial, we differentiate Eq. (27) with respect to k
n-times to obtain
Xn

k¼0

n

k

� �
o

kð1� kÞ
okk

o
n�k

okn�k fL½xðx; kÞ� � L½y0� ¼ �1
Xn

k¼0

n

k

� �
o

kðkÞ
okk

o
n�kF ½xðx; kÞ�

okn�k : ð29Þ
Simplifying last equation, Eq. (29) and divide by m! then set k ¼ 0, we obtain the following linear equation for yn:
LðynÞ ¼ �An�1; ð30Þ

or
yn ¼ �L�1ðAn�1Þ; ð31Þ

where
An ¼
1

n!

o
nF ½xðx; kÞ�

okn

����
k¼0

¼ dn; ð32Þ
which completes the proof. h

Theorem 1 above gives a great freedom to choose the linear operator £ when the Adomian decomposition
method is to be applied. Application of this theorem to a certain class of differential equations, namely, dif-
ferential equations with infinite domain can be found in [6].
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In this section the question of convergence of the Adomian decomposition method will be addressed.

Theorem 2. If the series
y0ðxÞ þ
X1
m¼1

ymðxÞ ð33Þ
is convergent, it must be a solution of Eq. (1).

Proof. By Eq. (22) we have
X1
m¼1

RmðxÞ ¼
X1
m¼1

£ ymðxÞ �
Xm�1

k¼1

b1;kym�kðxÞ
" #

¼ £
X1
m¼1

ymðxÞ �
X1
m¼1

Xm�1

k¼1

b1;kym�kðxÞ
" #

¼ £
X1
m¼1

ymðxÞ �
X1
k¼1

Xm�1

m¼kþ1

b1;kym�kðxÞ
" #

¼ £
X1
m¼1

ymðxÞ �
X1
k¼1

b1;k

Xm�1

m¼1

ymðxÞ
" #

¼ £ 1�
X1
k¼1

b1;k

 !X1
m¼1

ymðxÞ
" #

: ð34Þ
Recall that
bðkÞ ¼ k:
Therefore,
b1;k ¼

0; when k ¼ 0;

1; when k ¼ 1;

0; when k > 1;

8>><>>:

which gives by Eq. (34)
X1

m¼1

RmðxÞ ¼ 0: ð35Þ
On the other hand, we have by Eqs. (23) and (24) that
X1
m¼1

RmðxÞ ¼
X1
m¼1

�h
Xm

k¼1

a1;khm�kðxÞ ¼ �h
X1
m¼1

a1;k

X1
m¼k

hm�kðxÞ ¼ �h
X1
m¼1

a1;k

X1
m¼0

hmðxÞ

¼ �h
X1
m¼1

a1;k

X1
m¼k

1

m!

dm ~N ½~yðx; kÞ�
dkm

����
k¼0

: ð36Þ
Again, recall that
AðkÞ ¼ k:
Therefore,
a1;k ¼
0; when k ¼ 0;

1; when k ¼ 1;

0; when k > 1:

8><>:

Therefore,

P1
k¼1a1;k ¼ 1, Thus the above expression becomes
X1

m¼1

RmðxÞ ¼ �h
X1
m¼1

hmðxÞ ¼ �h
X1
m¼0

1

m!

dmF ½~yðx; kÞ�
dkm

����
k¼0

: ð37Þ
Note that �h ¼ �1, Therefore, By Eqs. (35) and (36) we have
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X1
m¼0

1

m!

dmF ~yðx; kÞ½ �
dkm

����
k¼0

¼ 0: ð38Þ
In addition, ~yðx; kÞ is not a solution of Eq. (1) in general when k 6¼ 1. Now define Dðx; kÞ ¼
F ~yðx; kÞ½ � � F ½yðxÞ� ¼ F ½~yðx; kÞ�, as a residual error of Eq. (1) then the Maclaurin’s series of this residual about
k ¼ 0 is
X1

m¼0

dmDðx; kÞ
dkm

�����
k¼0

km

m!
¼
X1
m¼0

dmF ½~yðx; kÞ�
dkm

����
k¼0

km

m!
: ð39Þ
According to Eq. (33), the above Maclaurin’s series converges at k ¼ 1; say
Dðx; 1Þ ¼ F ½~yðx; 1Þ� ¼
X1
m¼0

1

m!

dmF ½~yðx; kÞ�
dkm

����
k¼0

¼ 0; ð40Þ
which means that
yðxÞ ¼ ~yðx; 1Þ ¼ y0ðxÞ þ
X1
m¼1

ymðxÞ
must be a solution of Eq. (1), which completes the proof. h

To estimate whether the series converges or diverges, one can use the following theorem:

Theorem 3. If the series y0ðxÞ þ
P1

m¼1ymðxÞ converges then the following two sequences:
,k ¼
Xk

m¼1

RmðxÞ;

mk ¼
Xk

m¼1

hmðxÞ
where Rm(x) and hm(x) are defined by Eqs. (23) and (24) converge to zero.

Proof. The proof of this theorem is a subsequent of Eqs. (35) and (37). h

The above analysis shows that one has a variety of choices for the linear operator L and therefore a variety
of choices for the initial estimation y0(x) to start the Adomian decomposition iteration process. For example,
consider the non linear problem describes the fluid flow over a flat plate, know as the Balsius problem which is
given by
f 000ðgÞ þ 1

2
f ðgÞf 00ðgÞ ¼ 0;

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 1:
This problem was investigated in [6,16,34]. When the classical decomposition method is used, the linear oper-
ator is given by
Lðf Þ ¼ f 000
leads to a polynomial that approximate the solution in a finite domain only and the solution diverges as
t!1. When a different linear operator was chosen such that the boundary condition at infinity is taken into
consideration, the operator is given by
Lðf Þ ¼ f 000 þ bf 00
the initial solution f0ðgÞ is given by
f0ðgÞ ¼
e�bg

b
þ g� 1

b
;



F.M. Allan / Applied Mathematics and Computation 190 (2007) 6–14 13
where the parameter b was chosen to improve the rate of convergence of the iteration process and it was cho-
sen to be b ¼ 3. It is clear that the function satisfies the initial conditions f0ð0Þ ¼ 0, f 00ð0Þ ¼ 0 and the bound-
ary condition at infinity f 00ð1Þ ¼ 1. The sequence of functions fnðgÞ for n P 1 obtained by the recurrence
relation of Adomian decomposition method satisfies the initial conditions fnð0Þ ¼ 0, f 0nð0Þ ¼ 0 and the bound-
ary condition at infinity f 0nð1Þ ¼ 0. It was shown that the solution f ðgÞ ¼

PN
n¼0fnðgÞ converges for all values

of 0 6 g <1. Full details of the method can be found in [6].
5. Conclusion

In this article, the homotopy analysis method was used to derive the Adomian decomposition method. In
fact it was shown that the Adomian decomposition method is a special case of the homotopy analysis method.
In addition the criteria for the convergence of the homotopy analysis method was shown to be the same cri-
teria for the convergence of the Adomian decomposition method. The above analysis also shows that one has
a variety of choices for the linear operator L and therefore a variety of choices for the initial estimation y0(x)
to start the Adomian decomposition iteration process.
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