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Abstract

Here, an analytic technique, namely the homotopy analysis method (HAM), is applied to solve a generalized Hirota–Satsuma coupled KdV
equation. HAM is a strong and easy-to-use analytic tool for nonlinear problems and dose not need small parameters in the equations. Comparison
of the results with those of Adomian’s decomposition method (ADM) and homotopy perturbation method (HPM), has led us to significant
consequences. The homotopy analysis method contains the auxiliary parameter h̄, which provides us with a simple way to adjust and control the
convergence region of solution series.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Homotopy analysis method; Adomian’s decomposition method; Homotopy perturbation method; Generalized Hirota–Satsuma coupled KdV equation

1. Introduction

The investigation of the exact solution to nonlinear equa-
tions plays an important role in the study of nonlinear physical
phenomena. In this Letter, we consider a generalized Hirota–
Satsuma coupled Korteweg–de Vries (KdV) equation which
was introduced by Wu et al. [1]. One of the typical equations
in the hierarchy is a new generalized Hirota–Satsuma coupled
KdV equation as follows:

ut = 1

2
uxxx − 3uux + 3(vw)x,

vt = −vxxx + 3uvx,

(1)wt = −wxxx + 3uwx.

Eq. (1) is reduced to a new complex coupled KdV equation
[1] and the Hirota–Satsuma equation [2] with w = v∗ and
w = v, respectively. More recently, the soliton solutions for this
equation is constructed by Fan [3]. The discussed generalized
Hirota–Satsuma coupled KdV equation has been studied by
many researcher via different approaches, for example, Jacobi
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elliptic function method [4], the projective Riccati equations
method [5], the Adomian’s decomposition method [6] and re-
cently by homotopy perturbation method [7]. For Eq. (1), the
obtained results by HPM [7] are as the same results obtained
by Adomian’s decomposition method [6] and these are valid
only for small values of x and t . The absolute error of HPM
(and ADM) results for u(x, t) by the 5th-order and 10th-order
approximation (for some parameters) where x ∈ [0,100] and
t ∈ [0, T ] = [0,100] are plotted in Figs. 1 and 2, respectively.
The same situations exist for v(x, t) and w(x, t). This shows,
the limitations of the HPM and ADM for the considered prob-
lem.

In 1992, Liao employed the basic ideas of the homotopy in
topology to propose a general analytic method for nonlinear
problems, namely homotopy analysis method (HAM), [8–17].
This method has been successfully applied to solve many types
of nonlinear problems by others [18–25].

In this Letter, the basic idea of the HAM is introduced and
then its application in a generalized Hirota–Satsuma coupled
KdV equation is studied. Also, the comparison is made with
the exact solution and ADM [26] and HPM, which is obtained
by [6,7]. The homotopy analysis method contains the auxiliary
parameter h̄, which provides us with a simple way to adjust and
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Fig. 1. Absolute error for the 5th-order approximation by HPM and ADM.

Fig. 2. Absolute error for the 10th-order approximation by HPM and ADM.

control the convergence region of solution series for any values
of x and t .

2. Basic idea of HAM

In this Letter, we apply the homotopy analysis method
[8–13] to the discussed problem. To show the basic idea, let
us consider the following differential equation

N
[
z(x, t)

] = 0,

where N is a nonlinear operator, x and t denote independent
variables, z(x, t) is an unknown function, respectively. For sim-
plicity, we ignore all boundary or initial conditions, which can
be treated in the similar way. By means of generalizing the tra-
ditional homotopy method, Liao [10] constructs the so-called
zero-order deformation equation

(2)(1 − p)L
[
φ(x, t;p) − z0(x, t)

] = ph̄N
[
φ(x, t;p)

]
,

where p ∈ [0,1] is the embedding parameter, h̄ �= 0 is a non-
zero auxiliary parameter, L is an auxiliary linear operator,
z0(x, t) is an initial guess of z(x, t), φ(x, t;p) is a unknown
function, respectively. It is important, that one has great free-
dom to choose auxiliary things in HAM. Obviously, when
p = 0 and p = 1, it holds

φ(x, t;0) = z0(x, t), φ(x, t;1) = z(x, t),

respectively. Thus as p increases from 0 to 1, the solution
φ(x, t;p) varies from the initial guess z0(x, t) to the solution

z(x, t). Expanding φ(x, t;p) in Taylor series with respect to p,
one has

(3)φ(x, t;p) = z0(x, t) +
+∞∑
m=1

zm(x, t)pm,

where

(4)zm(x, t) = 1

m!
∂mφ(x, t;p)

∂pm

∣∣∣∣
p=0

.

If the auxiliary linear operator, the initial guess, and the aux-
iliary parameter h̄ are so properly chosen, the series (3) con-
verges at p = 1, one has

z(x, t) = z0(x, t) +
+∞∑
m=1

zm(x, t),

which must be one of solutions of original nonlinear equation,
as proved by Liao [10]. As h̄ = −1, Eq. (2) becomes

(1 − p)L
[
φ(x, t;p) − z0(x, t)

] + pN
[
φ(x, t;p)

] = 0,

which is used mostly in the homotopy perturbation method,
whereas the solution obtained directly, without using Taylor se-
ries [27,28]. The comparison between HAM and HPM, can be
found in [14,29].

According to (4), the governing equation can be deduced
from the zero-order deformation equation (2). Define the vector

�zn = {
z0(x, t), z1(x, t), . . . , zn(x, t)

}
.

Differentiating Eq. (2) m times with respect to the embedding
parameter p and then setting p = 0 and finally dividing them
by m!, we have the so-called mth-order deformation equation

(5)L
[
zm(x, t) − χmzm−1(x, t)

] = h̄Rm(�zm−1),

where

(6)Rm(�zm−1) = 1

(m − 1)!
∂m−1N [φ(x, t;p)]

∂pm−1

∣∣∣∣
p=0

,

and

χm =
{

0, m � 1,

1, m > 1.

It should be emphasized that zm(x, t) for m � 1 is governed
by the linear equation (5) with the linear boundary conditions
that come from original problem, which can be easily solved by
symbolic computation software such as Maple and Mathema-
tica.

3. Applications

To investigate the traveling wave solution of Eq. (1) and to
made comparison with HPM [7] and ADM [6], we choose the
linear operator

L
[
φ(x, t;p)

] = ∂φ(x, t;p)

∂t
,

with the property

L[c] = 0,
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where c is constant. From (1), we define a system of nonlinear
operators as

N1
[
φ1(x, t;p),φ2(x, t;p),φ3(x, t;p)

]
= ∂φ1(x, t;p)

∂t
− 1

2

∂3φ1(x, t;p)

∂x3

+ 3φ1(x, t;p)
∂φ1(x, t;p)

∂x

− 3
∂

∂x

(
φ2(x, t;p)φ3(x, t;p)

)
,

N2
[
φ1(x, t;p),φ2(x, t;p),φ3(x, t;p)

]
= ∂φ2(x, t;p)

∂t
+ ∂3φ2(x, t;p)

∂x3
− 3φ1(x, t;p)

∂φ2(x, t;p)

∂x
,

N3
[
φ1(x, t;p),φ2(x, t;p),φ3(x, t;p)

]

(7)

= ∂φ3(x, t;p)

∂t
+ ∂3φ3(x, t;p)

∂x3
− 3φ1(x, t;p)

∂φ3(x, t;p)

∂x
.

Using above definition, we construct the zeroth- order defor-
mation equations

(1 − p)L
[
φi(x, t;p) − zi,0(x, t)

]
= ph̄iNi

[
φ1(x, t;p),φ2(x, t;p),φ3(x, t;p)

]
, i = 1,2,3.

Obviously, when p = 0 and p = 1,

φ1(x, t;0) = z1,0(x, t) = u(x,0), φ1(x, t;1) = u(x, t),

φ2(x, t;0) = z2,0(x, t) = v(x,0), φ2(x, t;1) = v(x, t),

φ3(x, t;0) = z3,0(x, t) = w(x,0), φ3(x, t;1) = w(x, t).

Therefore, as the embedding parameter p increases from 0 to
1, φi(x, t;p) varies from the initial guess zi,0(x, t) to the solu-
tion u(x, t), v(x, t) and w(x, t), for i = 1,2,3, respectively.
Expanding φi(x, t;p) in Taylor series with respect to p for
i = 1,2,3, one has

φi(x, t;p) = zi,0(x, t) +
+∞∑
m=1

zi,m(x, t)pm,

where

zi,m(x, t) = 1

m!
∂mφi(x, t;p)

∂pm

∣∣∣∣
p=0

.

If the auxiliary linear operator, the initial guess, and the aux-
iliary parameters h̄i are so properly chosen, the above series
converge at p = 1, one has

u(x, t) = z1,0(x, t) +
+∞∑
m=1

z1,m(x, t),

v(x, t) = z2,0(x, t) +
+∞∑
m=1

z2,m(x, t),

w(x, t) = z3,0(x, t) +
+∞∑
m=1

z3,m(x, t),

which must be one of solutions of original nonlinear equation,
as proved by Liao [10]. Define the vectors

�zi,n = {
zi,0(x, t), zi,1(x, t), . . . , zi,n(x, t)

}
, i = 1,2,3.

We gain the mth-order deformation equations

L
[
zi,m(x, t) − χmzi,m−1(x, t)

]
(8)= h̄iRi,m(�z1,m−1, �z2,m−1, �z3,m−1), i = 1,2,3,

where

R1,m(�z1,m−1, �z2,m−1, �z3,m−1)

= ∂z1,m−1(x, t)

∂t
− 1

2

∂3z1,m−1(x, t)

∂x3

+ 3
m−1∑
n=0

z1,n(x, t)
∂z1,m−1−n(x, t)

∂x

− 3
∂

∂x

(
m−1∑
n=0

z2,n(x, t)z3,m−1−n(x, t)

)
,

R2,m(�z1,m−1, �z2,m−1, �z3,m−1)

= ∂z2,m−1(x, t)

∂t
+ ∂3z2,m−1(x, t)

∂x3

− 3
m−1∑
n=0

z1,n(x, t)
∂z2,m−1−n(x, t)

∂x
,

R3,m(�z1,m−1, �z2,m−1, �z3,m−1)

= ∂z3,m−1(x, t)

∂t
+ ∂3z3,m−1(x, t)

∂x3

− 3
m−1∑
n=0

z1,n(x, t)
∂z3,m−1−n(x, t)

∂x
.

Now, the solution of the mth-order deformation Eqs. (8) for
m � 1 become

zi,m(x, t) = χmzi,m−1(x, t)

(9)+ h̄iL−1[Ri,m(�z1,m−1, �z2,m−1, �z3,m−1)
]
,

for i = 1,2,3. For simplicity, we suppose h̄1 = h̄2 = h̄3 = h̄.
Firstly, we consider the solution of Eq. (1) with the initial

conditions [3,6,7]

u(x,0) = 1

3

(
β − 2k2) + 2k2 tanh2(kx),

v(x,0) = −4k2c0(β + k2)

3c2
1

+ 4k2(β + k2)

3c1
tanh(kx),

(10)w(x,0) = c0 + c1 tanh(kx),

where k, c0, c1 �= 0, and β are arbitrary constants. According to
(9) and (10), we now successively obtain

z1,1(x, t) = −4h̄βk3t sech2(kx) tanh(kx),

z1,2(x, t) = 2h̄2β2k4t2(2 − cosh(2kx)
)

sech4(kx)

− 4
(
h̄ + h̄2)βk3t sech2(kx) tanh(kx),

z2,1(x, t) = −4h̄βk3(β + k2)t sech2(kx)

3c1
,
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z2,2(x, t) = −4h̄2β2k4(β + k2)t2 sech2(kx) tanh(kx)

3c1

− 4(h̄ + h̄2)βk3t (β + k2) sech2(kx)

3c1
,

z3,1(x, t) = −c1h̄βkt sech2(kx),

z3,2(x, t) = −c1h̄
2β2k2t2 sech2(kx) tanh(kx)

− c1
(
h̄ + h̄2)βkt sech2(kx).

Obviously, for h̄ = −1 the obtained solutions are as the same
HPM [7], also ADM [6]. Unfortunately, the HPM and ADM
solutions are valid only for some values of x and t , as reported
in [6,7].

Using Taylor series with initial conditions (10), we obtain
the closed form solutions as follows:

u(x, t) = 1

3

(
β − 2k2) + 2k2 tanh2[k(x + βt)

]
,

v(x, t) = −4k2c0(β + k2)

3c2
1

+ 4k2(β + k2)

3c1
tanh

[
k(x + βt)

]
,

w(x, t) = c0 + c1 tanh
[
k(x + βt)

]
,

which is bell-type for u(x, t) and kink-type for v(x, t) and
w(x, t) and constructed by Fan [3]. The absolute error of HPM
(and ADM) results for u(x, t) by the 5th-order and 10th-order
approximation when c0 = 1.5, c1 = 0.1, β = 1.5, k = 0.1,
x ∈ [0,100] and t ∈ [0, T ] = [0,100] are plotted in Figs. 1
and 2, respectively.

Also the error of norm 2 with HAM by 10th-order approxi-
mation, i.e.,(

1

81

∑
i,j

(
u(xi, tj ) − z1,10(xi, tj )

)2
)0.5

,

(
1

81

∑
i,j

(
v(xi, tj ) − z2,10(xi, tj )

)2
)0.5

,

(
1

81

∑
i,j

(
w(xi, tj ) − z3,10(xi, tj )

)2
)0.5

,

where u(x, t), v(x, t) and w(x, t) are exact solutions, xi = ti =
5i, i = 0,1, . . . ,8 with respect to h̄ are plotted in Figs. 3–5 for
x ∈ [0,40] and t ∈ [0, T ] = [0,40]. When h̄ is a function of T

such as h̄ = −1/(1+T ), the higher the order of approximation,
the smaller absolute error, as shown in Figs. 6–8, indicating that
the absolute error about T might become zero as the order of
approximation tends to infinity.

To examine the accuracy and reliability of the HAM for
the generalized Hirota–Satsuma coupled KdV equation, we can
consider the different initial values [3,6,7]

u(x,0) = 1

3

(
β − 8k2) + 4k2 tanh2(kx),

v(x,0) = −4k2(3k2c0 − 2βc2 + 4k2c2)

3c2
2

+ 4k2

c2
tanh2(kx),

(11)w(x,0) = c0 + c2 tanh2(kx),

where k, c0, c2 �= 0, and β are arbitrary constants. Using Taylor
series with initial conditions (11), we obtain the closed form

Fig. 3. Error of norm 2 for the 10th-order approximation by HAM for u(x, t)

per h̄.

Fig. 4. Error of norm 2 for the 10th-order approximation by HAM for v(x, t)

per h̄.

Fig. 5. Error of norm 2 for the 10th-order approximation by HAM for w(x, t)

per h̄.

Fig. 6. Absolute error for the 10th-order approximation by HAM for u(x, t) and
h̄ = −1/101.
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Fig. 7. Absolute error for the 10th-order approximation by HAM for v(x, t) and
h̄ = −1/101.

Fig. 8. Absolute error for the 10th-order approximation by HAM for w(x, t)

and h̄ = −1/101.

solutions as follows:

u(x, t) = 1

3

(
β − 8k2) + 4k2 tanh2[k(x + βt)

]
,

v(x, t) = −4k2(3k2c0 − 2βc2 + 4k2c2)

3c2
2

+ 4k2

c2
tanh2[k(x + βt)

]
,

w(x, t) = c0 + c2 tanh2[k(x + βt)
]
,

which is bell-type for all u(x, t), v(x, t) and w(x, t) and con-
structed by Fan [3]. The same situation exists for this example.
For briefly, only the error of norm 2 with HAM by 5th-order
approximation with respect to h̄ are plotted in Figs. 9–11 for
x ∈ [0,40] and t ∈ [0, T ] = [0,40], when c0 = 1.5, c2 = 0.1,
β = 1.5, k = 0.1.

4. Conclusions

In this Letter, the homotopy analysis method (HAM) [10] is
applied to obtain the solution of a generalized Hirota–Satsuma
coupled KdV equation. HAM provides us with a convenient
way to control the convergence of approximation series by
adapting h̄, which is a fundamental qualitative difference in
analysis between HAM and other methods. Also, it has been

Fig. 9. Error of norm 2 for the 5th-order approximation by HAM for u(x, t)

per h̄.

Fig. 10. Error of norm 2 for the 5th-order approximation by HAM for v(x, t)

per h̄.

Fig. 11. Error of norm 2 for the 5th-order approximation by HAM for w(x, t)

per h̄.

shown that the HPM and ADM are valid only for some values
of x and t .

Also, according to Figs. 3–5 in first case and Figs. 9–11 in
second case, the series solutions obtained by HPM, i.e., HAM
with h̄ = −1, are divergent which have no meanings [14]. This
Letter shows us the validity and great potential of the HAM for
nonlinear problems in science and engineering.
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