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Abstract

Recently, Rajabi et al. (Application of homotopy perturbation method in nonlinear heat conduction and convection equations, Phys.
Lett. A 360 (2007) 570–573.) discussed the solutions of temperature distribution in lumped system of combined convection–radiation.
They solved a nonlinear equation of the steady conduction in a slab with variable thermal conductivity using both perturbation and
homotopy perturbation methods. They claim that homotopy perturbation method (HPM) does not require any small parameter.
However, this statement is not true always. Moreover, HPM have no criteria for establishing the convergence of the series solution.
In this letter we have explicitly shown that the results of the problem considered in example 2 of (Rajabi, Ganji, Therian, Application
of homotopy perturbation method in nonlinear heat conduction and convection equations, Phys. Lett. A 360 (2007) 570–573.) are
valid only for 0� ��1. We have used the homotopy analysis method for finding the more meaningful solution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The homotopy analysis method (HAM) has been proposed by Liao in his PhD dissertation in 1992. However, in
Liao’s PhD dissertation [14], Liao did not introduced the auxiliary parameter h̄, but simply followed the traditional
concept of homotopy to construct the following one-parameter family of equations:

(1 − p)L(u) + pN(u) = 0, (1)

where L is an auxiliary linear operator, N is a nonlinear operator related to the original nonlinear problem N(u) = 0
and p is the embedding parameter. For example, Eq. (1.49) in Liao’s dissertation [14] is in the above form. In [15],
Liao expressed the above equation in a different form as

(1 − p)L(u) = −pN(u). (2)
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For details, please refer to Eq. (2.11) in [15]. However, Liao found that in some cases the series solution is divergent.
To overcome this disadvantage, in 1997, Liao introduced the so-called auxiliary parameter in [16,17] to construct the
following two-parameter family of equation:

(1 − p)L(u − u0) = h̄pN(u), (3)

where u0 is an initial guess. For details, please refer to Eq. (2.1) in [16] and Eq. (2.1) in [17]. Obviously, Eq. (1) is a
special case of Eq. (3) when h̄ = −1. Liao pointed out [14,17–20,22] that the convergence of the solution series given
by the HAM is determined by h̄, and thus one can always get a convergent series solution by means of choosing a
proper value of h̄. So, the auxiliary parameter h̄ provides us a simple way to ensure the convergence of HAM series
solutions. Using the definition of Taylor series with respect to the embedding parameter p (which is a power series of
p), Liao gave a general equations for high-order approximations.

In 1998, Dr. He followed Dr. Liao’s early idea to construct the one-parameter family of equation

(1 − p)L(u) + pN (u) = 0, (4)

which is exactly the same as Liao’s early one-parameter family equation (1), and is a special case of Liao’s modified
two-parameter equation (3) when h̄ = −1. From this point of view, there is nothing new in HPM (proposed by Dr. He
[11–13]. Different from Liao [14–19], Dr. He directly substituted the power series of p into Eq. (4) to give equations
for high-order approximation by equating the coefficients of like power of p. Unfortunately, as proved by Hayat and
Sajid in [10] and Sajid et al. in [25,27], these two approaches give the same equations for high-order approximations.
This is mainly because the Taylor series of a given function is unique, which is a basic theory in calculus [5]. Thus,
nothing is new in Dr. He’s approach, except the new name “homotopy perturbation method”: Dr. He just employed
the early ideas of Liao’s HAM. It must be pointed out that some other authors [26] also pointed out this fact. It is very
unrealistic that various workers are still claiming that HPM does not require any small parameter. In this letter we are
again showing explicitly that the results presented in [24] for example 2 are divergent for the parameter values � > 1
and also for � < 1 one needs more number of iterations to get the convergent solutions and only a solution up to the
second term is not reasonable. The arrangement of the paper is as follows.

The HAM [19] solution is presented in Section 2. HAM is a powerful mathematical technique and has been already
applied to several nonlinear problems [1–4,6–9,18,20–23,26,28–30]. In Section 3 we have explicitly shown for the
considered example that the equations and solutions of HPM can be obtained as a special case of HAM when h̄ = −1.
Section 4 includes the analysis of results. Section 5 synthesis the concluding remarks.

2. HAM solution

The problem considered in Ref. [24] is:

d

dX

[
(1 + ��)

d�

dX

]
= 0, (5)

�(0) = 1, �(1) = 0. (6)

2.1. Zeroth-order deformation problem

The temperature �(X) can be expressed by the set of base functions{
Xk
∣∣∣ k�0

}
(7)

in the form of the following series:

�(X) = a0,0 +
∞∑

k=0

am,kX
k , (8)
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in which am,k are the coefficients. Invoking the so-called Rule of solution expressions for �(X) and Eq. (6) the initial
guess �0(X) and linear operators L are

�0(X) = 1 − X, (9)

L(f ) = f ′′, (10)

where

L[C1X + C2] = 0, (11)

and C1, C2 are the constants and the nonlinear operator is

N
[̂
�(X, p)

]
= �2̂�(X, p)

�X2
+ �

⎡⎣( �̂� (X, p)

�X

)2

+ �̂ (X, p)
�2̂� (X, p)

�X2

⎤⎦ . (12)

The problem at the zeroth-order is

(1 − p)L
[̂
� (X, p) − �0 (X)

]
= ph̄N

[̂
� (X, p)

]
, (13)

�̂(0, p) = 1, �̂(1, p) = 0, (14)

where h̄ is the auxiliary nonzero parameter and p(∈ [0, 1]) is an embedding parameter. For p = 0 and 1, we have

�̂(X, 0) = �0(X), �̂(X, 1) = �(X). (15)

The initial guess �0(X) tends to �(X) as p varies from 0 to 1. Due to Taylor’s series expansion

�̂(X, p) = �0(X) +
∞∑

m=1

�m(X)pm, (16)

where

�m (X) = 1

m!
�m�̂ (X, p)

�pm

∣∣∣∣∣
p=0

, (17)

and the convergence of series (16) depends upon the values of h̄. The value of h̄ is chosen in such a way that series
(16) is convergent at p = 1. Then by using Eq. (15) one obtains

�(X) = �0(X) +
∞∑

m=1

�m(X). (18)

2.2. mth-order deformation problems

Here we first differentiate Eq. (13) m times with respect to p then divide by m! and setting p = 0 we obtain

L
[
�m(X) − �m�m−1(X)

]= h̄Rm(X), (19)

�m(0) = �m(1) = 0, (20)

where

Rm(X) = d2�m−1

dX2
+ �

m−1∑
k=0

(�′
m−1−k�

′
k + �m−1−k�

′′
k), (21)

�m =
{

0, m�1,

1, m > 1.
(22)
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The general solutions of Eqs. (19)–(21) can be written as

�m(X) = ��
m(X) + C1X + C2, (23)

where ��
m(X) is the particular solution and the constants are determined by the boundary conditions (20). In the next

section, the linear non-homogeneous Eqs. (19)–(21) are solved using Mathematica in the order m = 1, 2, 3, . . . .

3. Comparison of HPM and HAM

To make a comparison between HPM and HAM we will first show that the first and second order equations of the
HAM are exactly the same as presented in Ref. [24] for h̄ = −1. Assuming m = 1 and h̄ = −1, Eqs. (19)–(21) read as

d2�1

dX2
+ �

(
d�0

dX

d�0

dX
+ �0

d2�0

dX2

)
= 0, (24)

�1(0) = �1(1) = 0, (25)

which are exactly same as Eqs. (42) and (43) of Ref. [24] when we replace � by v. It shows that the first order equation
of HPM is exactly the same as the first-order equation of HAM when h̄ = −1. For m = 2 and h̄ = −1 we have from
Eqs. (19)–(21) that

d2�2

dX2
+ �

1∑
k=0

(
2

d�1

dX

d�0

dX
+ �1

d2�0

dX2
+ �0

d2�1

dX2

)
= 0, (26)

�2(0) = �2(1) = 0, (27)

which are again exactly the same as Eqs. (44) and (45) of Ref. [24]. We have checked explicitly for first two orders of
approximations that HPM equations are same as HAM equations when h̄ = −1. It can be easily checked for higher
orders, i.e. for m = 3, 4, 5, . . . . Moreover, the solutions provided by HAM for the first two orders are exactly the same
as presented in Eq. (46) of Ref. [24] when h̄ = −1. Hence in general we can reduce the HPM equations as well as
solutions from the HAM equations and solutions by taking h̄ = −1.

4. Analysis of the results

We note that the explicit, analytic expression in Eq. (14) is the series solution of the problem. As pointed out earlier
that the convergence region and rate of approximation strongly depend on the choice of the values of the auxiliary
parameter h̄ for the HAM. For this purpose, the h̄-curves are plotted for four different values of the parameter � in
Fig. 1. This figure depicts that the interval for admissible values of h̄ shrinks towards zero by increasing �. As it is
proved explicitly for this example in the previous section that the results of HPM can be obtained as a special case of
HAM when h̄ = −1. Therefore, the results presented in figures and table when h̄ = −1 can be considered as results of
HPM. However, Fig. 1 shows that h̄ = −1 is valid only for ��1. Therefore, one cannot get convergent results using
HPM for values � > 1. To confirm this the �.h̄ curves for different values of h̄ are drawn against � in Fig. 2. Fig. 2
elucidates that for large values of � one has to take small values of the parameter h̄ and also h̄ = −1 is not valid for
all the ranges of �. Further to see the convergence of the solutions of HAM we have made Table 1. Table 1 shows that
even for � = 0.5 one can get convergent results for HPM but one needs 20-term solution for that and only a two-term
solution is not enough. Also for large values of � the HPM results are divergent and are shown in Table 1.

5. Concluding remarks

In this letter it has been explicitly proved that for the nonlinear problems where h̄ is different from .1 one cannot
get convergent results by using HPM. However, HAM provides us a simple way to control and adjust the convergence
regions where and whenever necessary. It is further shown by the solution of example 2 in [24] that HPM is only valid
for the week nonlinearity like the traditional perturbation technique. It is also pointed out that claim of HPM solutions
as convergent ones for all nonlinear problems is erroneous.
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Fig. 1. h̄-curves for different values of �.
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Fig. 2. �.h̄-curves for different values of h̄.

Table 1
Values of �′

(0) for different orders of approximation

Order of approximation � = 0.5 � = 2.0 � = 5.0

h̄ = −1 h̄ = −0.25 h̄ = −1 h̄ = −0.1 h̄ = −1

1 −0.75 −0.75 0.00 −0.75 1.5
5 −0.828125 −0.666992 10.0 −0.5876 1301.5

10 −0.833496 −0.666668 −342 −0.583377 −4.07 × 106

15 −0.833328 −0.666667 1.09 × 104 −0.583334 1.27 × 1010

20 −0.833333 −0.666667 −3.40 × 105 −0.583333 −3.97 × 1013

25 −0.833333 −0.666667 1.12 × 107 −0.583333 1.24 × 1017

30 −0.833333 −0.666667 3.58 × 108 −0.583333 −3.88 × 1020
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