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Abstract

A new analytic method for highly nonlinear problems, namely the homotopy analysis method, is applied

to solve the Von Kármán swirling viscous flow, governed by a set of two fully coupled differential equations

with strong nonlinearity. An explicit, purely analytic and uniformly valid solution is given, which agrees
well with numerical results.
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1. Introduction

Von Kármán swirling viscous flow [1] is a famous classical problem in fluid mechanics. The
original problem raised by Von Kármán is the viscous flow induced by an infinite rotating disk
where the fluid far from the disk is at rest. Then the problem is generalized to include the case
where the fluid itself is rotating as a solid body far from the disk with suction or injection at
the disk surface. This introduces a parameter, i.e. the ratio of the angular velocity of the fluid
at infinity to the angular velocity of the disk. Another generalization is to consider the viscous
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flow between two infinite coaxial rotating disks with suction or injection at both disks and this
introduces another parameter, i.e. the Reynolds number determined by the distance of the two
disks. All these problems are attacked, theoretically, numerically and experimentally, by many
researchers such as Cochran [2], Fettis [3], Rogers and Lance [4], Benton [5], and so on (for details,
please refer to Zandbergen and Dijkstra�s review paper [6]). However, all of these results are either
numerical or analytical-numerical.

In this paper, we focus on the original problem of Von Kármán [1]. Consider the steady, lami-
nar, axially-symmetric viscous flow induced by an infinite disk rotating steadily with angular
velocity X about the z-axis in a cylindrical coordinate system (r, h, z). The motion of the incom-
pressible viscous fluid, which is confined to the half-space z > 0 above the disk, is governed by the
continuity and the exact Navier–Stokes equations
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subject to the nonslip boundary conditions on the disk and boundary conditions at infinity
V h ¼ rX; V r ¼ V z ¼ 0 ðz ¼ 0Þ; ð5Þ
V r ¼ V z ¼ 0 ðz ¼ þ1Þ; ð6Þ
where q is the fluid density, m is the kinematic viscosity coefficient, ~P is the pressure and Vr, Vh, Vr

are the velocity components in the radial, azimuthal and axial directions, respectively. Von Kár-
mán [1] devised a similarity transformation
V r ¼ ðrXÞ F ðgÞ;
V h ¼ ðrXÞ GðgÞ;
V z ¼
ffiffiffiffiffiffi
mX

p
HðgÞ;
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~P ¼ �qmX PðgÞ;
where
g ¼ z

ffiffiffiffi
X
m

r
:

With this transformation he was able to reduce the governing partial differential Eqs. (1)–(4) to
a set of ordinary differential equations
F 00 ¼ F 2 � G2 þ F 0H ; ð7Þ
G00 ¼ G0H þ 2FG; ð8Þ
HH 0 ¼ P 0 þ H 00; ð9Þ
2F þ H 0 ¼ 0; ð10Þ

subject to the boundary conditions
F ð0Þ ¼ F ðþ1Þ ¼ 0; Gð0Þ ¼ 1; Gðþ1Þ ¼ 0; Hð0Þ ¼ 0; ð11Þ

where the prime denotes the derivative with respect to g. According to (10) one has
F ¼ �H 0

2
: ð12Þ
Substitute (12) into (7) and (8), one has
H 000 � H 00H þ 1

2
H 0H 0 � 2G2 ¼ 0; ð13Þ
G00 � HG0 þ H 0G ¼ 0; ð14Þ

with boundary conditions
Hð0Þ ¼ H 0ð0Þ ¼ H 0ðþ1Þ ¼ 0; Gð0Þ ¼ 1; Gðþ1Þ ¼ 0: ð15Þ

It should be emphasized that the above equations are deduced directly from the exact Navier–

Stokes equations. This might be an important reason why this problem attracted so many
researchers.

The above equations are fully coupled and highly nonlinear. Von Kármán [1] gave the approx-
imate solution of these equations based on the momentum integral method. Cochran [2] pointed
out the errors contained in Kármán�s solution and used a kind of matching technique like Blasius�
method to give a solution more accurate than Kármán�s one. Fettis [3] devised a new asymptotic
expansion which can describe the entire flow and Benton [5] gave an asymptotic solution better
than Cochran�s solution using Fettis�s Method with only a trivial difference. However all the
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above-mentioned solutions employed some numerical methods and are essentially semi-analytic
and semi-numerical ones.

Currently, Liao [7–11] proposed a new analytic method for highly nonlinear problems, namely
the homotopy analysis method (HAM). Unlike perturbation techniques, the artificial small
parameter method [12], the d-expansion method [13] and Adomian�s decomposition method
[14], the homotopy analysis method itself provides us with a convenient way to control the con-
vergence of approximation series and adjust convergence regions when necessary. Briefly speak-
ing, the homotopy analysis method has the following advantages

1. it is valid even if a given nonlinear problem does not contain any small/large parameters at all;
2. it itself can provide us with a convenient way to control the convergence of approximation ser-

ies and adjust convergence regions when necessary;
3. it can be employed to efficiently approximate a nonlinear problem by choosing different sets of

base functions.

Besides, the homotopy analysis method logically contains Lyapunov�s artificial small parameter
method [12], the d-expansion method [13], and Adomian�s decomposition method [14] (as shown
by Liao [7]).

The homotopy analysis method has been successfully applied to many nonlinear problems,
such as nonlinear water waves [15], similarity boundary layer equations [16], Cheng-Chang equa-
tion [17], a third grade fluid past a porous plate [18], the flow of an Oldroyd 6-constant fluid [19],
and so on. All of these verify the validity of the homotopy analysis method. In this paper we
employ it to the original Von Kármán swirling viscous flow and to give an explicit, purely ana-
lytic, uniformly valid solution of above-mentioned fully coupled equations with strong
nonlinearity.
2. The explicit analytic solution

Due to the boundary conditions (15), H(g) and G(g) can be expressed in form
HðgÞ ¼ A0;0 þ
Xþ1

i¼1

Xþ1

j¼0

Ai;jg
me�ig; ð16Þ
GðgÞ ¼
Xþ1

i¼1

Xþ1

j¼0

Bi;jg
me�ig; ð17Þ
respectively, where Ai,j and Bi,j are coefficients. They provide us with the Rule of Solution Expres-

sion, which plays an important role in the frame of the homotopy analysis method, as pointed out
by Liao [8]. According to the boundary conditions (15) and the foregoing Rule of Solution Expres-
sion defined by (16) and (17), we choose
h0ðgÞ ¼ �1þ e�g þ ge�g; ð18Þ
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g ðgÞ ¼ e�g ð19Þ
0
as the initial approximations of H(g) and G(g), and
LHðf Þ ¼ f 000 � f 0; ð20Þ
LGðf Þ ¼ f 00 � f ð21Þ
as our auxiliary linear operators, which have the following properties
LH ½C1 þ C2e
g þ C3e

�gÞ� ¼ 0; ð22Þ
LG½C4e
g þ C5e

�gÞ� ¼ 0; ð23Þ
where C1, C2, C3, C4 and C5 are constants.
Then, we construct the so-called zeroth-order deformation equations
ð1� pÞ LH ½Kðg; pÞ � h0ðgÞ� ¼ p�hHNH ½Kðg; pÞ;Cðg; pÞ�; ð24Þ
ð1� pÞ LG Cðg; pÞ � g0ðgÞ½ � ¼ p�hGNG½Kðg; pÞ;Cðg; pÞ�; ð25Þ
subject to the boundary conditions
Kð0; pÞ ¼ oKðg; pÞ
og

����
g¼0

¼ oKðg; pÞ
og

����
g¼þ1

¼ 0; Cð0; pÞ ¼ 1; Cðþ1; pÞ ¼ 0; ð26Þ
where NH and NG are two nonlinear differential operators defined by
NH ½Kðg; pÞ;Cðg; pÞ� ¼
o3Kðg; pÞ

og3
� Kðg; pÞ o

2Kðg; pÞ
og2

þ 1

2

oKðg; pÞ
og

� �2
� 2½Cðg; pÞ�2; ð27Þ
NG½Kðg; pÞ;Cðg; pÞ� ¼
o2Cðg; pÞ

og2
� Kðg; pÞ oCðg; pÞ

og
þ Cðg; pÞ oKðg; pÞ

og
ð28Þ
and p2 [0,1] is the embedding parameter, �hH and �hG are auxiliary nonzero parameters. When
p = 0, we get the solution
Kðg; 0Þ ¼ h0ðgÞ; Cðg; 0Þ ¼ g0ðgÞ ð29Þ

of Eqs. (24)–(26). When p = 1, Eqs. (24)–(26) are the same as the original Eqs. (13)–(15), respec-
tively, so that
Kðg; 1Þ ¼ HðgÞ; Cðg; 1Þ ¼ GðgÞ: ð30Þ

So, as p increases from 0 to 1, K(g, p) varies from the initial guess h0(g) to the exact solution

H(g), so does C(g, p) from g0(g) to G(g). By Taylor�s theorem and (29), we have
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Kðg; pÞ ¼ h0ðgÞ þ
Xþ1

k¼1

hkðgÞ pk; ð31Þ
Cðg; pÞ ¼ g0ðgÞ þ
Xþ1

k¼1

gkðgÞ pk; ð32Þ
where
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If the series (31) and (32) are convergent at p = 1, we have due to (30) that
HðgÞ ¼ h0ðgÞ þ
Xþ1

k¼1

hkðgÞ; ð34Þ
GðgÞ ¼ g0ðgÞ þ
Xþ1

k¼1

fkðgÞ: ð35Þ
Differentiating k times the zeroth-order deformation Eqs. (24)–(26) with respect to p and then
dividing them by k! and finally setting p = 0, we can get the kth-order deformation equations
LH ½hkðgÞ � vkhk�1ðgÞ� ¼ �hHRH
k ðgÞ; ð36Þ
LG gkðgÞ � vkgk�1ðgÞ½ � ¼ �hGRG
k ðgÞ; ð37Þ
subject to the boundary conditions
hkð0Þ ¼ h0kð0Þ ¼ h0kðþ1Þ ¼ 0; ð38Þ
gkð0Þ ¼ gkðþ1Þ ¼ 0; ð39Þ

where
RH
k ðgÞ ¼ h000k�1ðgÞ �

Xk�1

j¼0

h00j ðgÞhk�1�jðgÞ �
1

2
h0jðgÞh0k�1�jðgÞ þ 2gjðgÞgk�1�jðgÞ

� �
; ð40Þ
RG
k ðgÞ ¼ g00k�1ðgÞ �

Xk�1

j¼0

hjðgÞg0k�1�jðgÞ � h0jðgÞgk�1�jðgÞ
h i

; ð41Þ
and
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vk ¼
0; k6 1;

1; k > 1:

�
ð42Þ
We apply the symbolic computation software MATHEMATICA to solve the linear Eqs. (36)
and (39) successively in the order k = 1, 2, 3,. . ., and we find that hk(g) and gk(g) can be expressed
by
hkðgÞ ¼
Xkþ1

n¼0

e�ng
Xkþ1

i¼0

aik;ng
i; ð43Þ
gkðgÞ ¼
Xkþ1

n¼1

e�ng
Xkþ1

i¼0

bi
k;ng

i: ð44Þ
We have got the explicit analytic solution
HðgÞ ¼ lim
M!þ1

XM
k¼0

Xkþ1

n¼0

e�ng
Xkþ1

i¼0

aik;ng
i; ð45Þ
GðgÞ ¼ lim
M!þ1

XM
k¼0

Xkþ1

n¼1

e�ng
Xkþ1

i¼0

bi
k;ng

i ð46Þ
of the original Eqs. (13)–(15). Actually, we can calculate all the coefficients algebraically from the
following first coefficients given by the initial guess
a00;0 ¼ �1; a00;1 ¼ 1; a10;1 ¼ 1; b0
0;1 ¼ 1: ð47Þ
At the Mth-order approximation, the solution can be expressed as follows
HðgÞ �
XM
k¼0

Xkþ1

n¼0

e�ng
Xkþ1

i¼0

aik;ng
i; ð48Þ
GðgÞ �
XM
k¼0

Xkþ1

n¼1

e�ng
Xkþ1

i¼0

bi
k;ng

i: ð49Þ
Then, due to (9), it is easy to have
PðgÞ � P ð0Þ ¼ H 2ðgÞ
2

� H 0ðgÞ: ð50Þ
And as mentioned before, F(g) is given by (12).
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3. The convergence of the solution

The explicit, analytic expressions (45) and (46) contain two auxiliary parameters �hH and �hG. As
pointed by Liao [7,8], the convergence region and rate of the approximations given by the homot-
opy analysis method are determined by the value of such kind of auxiliary parameters. Our cal-
culations indicate that the series (45) and (46) converge to the numerical solution in the whole
region of g, when
Fig. 1

initial

30th-o
�16 �hH < 0; �16 �hG < 0: ð51Þ

And when �hH ¼ �hG ¼ �1, the solution series converge fastest. The comparison of our analytic

solution (48) and (49) with the numerical solution when �hH ¼ �hG ¼ �1 at different order of
approximation are as shown in Figs. 1 and 2. Obviously, our analytic solution uniformly con-
verges to the numerical results. Note that the series (49) of G(g) converges faster than that of
H(g), mainly because the nonlinearity of the latter is stronger than the former.

The values of H(+1) and
P ðþ1Þ � P ð0Þ ¼ H 2ðþ1Þ
2

have clear physical meanings. Cochran [2] gave H(+1) = �0.886 and P(+1)�P(0) = 0.3925. Fet-
tis [3] obtained H(+1) = �0.8840 and P(+1) � P(0) = 0.3907. Benton�s analytical-numerical
value [5] (1966) of H(+1) is �0.8845, which gives P(+1) � P(0) = 0.3911. Our pure analytic
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values of H(+1) and P(+1) � P(0) agree well with Benton�s analytical-numerical ones [5] (1966)
(as shown in Table 1).

Liao [7] proved in general such a convergence theorem, i.e. any a solution series given by the
homotopy analysis method must be one of solutions of considered nonlinear problem. To show
this for the Von Kármán swirling flow, let us consider the average residual errors of the two
equations
Table

Appro

Order

0

5

10

15

20

30

40

45
EH ¼ 1

10

Z 10

0

H 000ðgÞ � H 00ðgÞHðgÞ þ 1

2
H 0ðgÞH 0ðgÞ � 2GðgÞ2

����
����dg;
EG ¼ 1

10

Z 10

0

jG00ðgÞ � HðgÞG0ðgÞ þ H 0ðgÞGðgÞ j dg:
1

ximations of H(+1) and P(+1) � P(0) when �hH ¼ �hG ¼ �1 at different order of approximation

of approximation H(+1) P(+1) � P(0)

�1 0.5

�0.9173 0.4207

�0.8747 0.3825

�0.8833 0.3901

�0.8845 0.3910

�0.8845 0.3911

�0.8845 0.3911

�0.8845 0.3911



Table 2

Residual errors of our analytic solutions when �hH ¼ �hG ¼ �1 at different order of approximation

Order of approximation EH EG

0 3.75 · 10�2 5.00 · 10�2

5 2.94 · 10�3 2.66 · 10�3

10 1.07 · 10�3 5.31 · 10�4

15 4.08 · 10�4 1.05 · 10�4

20 1.62 · 10�4 2.25 · 10�5

25 6.40 · 10�5 1.04 · 10�5

30 2.46 · 10�5 7.95 · 10�6

35 8.88 · 10�6 5.47 · 10�6

40 2.77 · 10�6 3.33 · 10�6

45 5.41 · 10�7 1.87 · 10�6

92 C. Yang, S. Liao / Communications in Nonlinear Science and Numerical Simulation 11 (2006) 83–93
The average residual errors of series (48) and (49) at different order of approximations when
�hH ¼ �hG ¼ �1 are listed in Table 2. Obviously, as the order M increases, the average residual er-
rors decrease. This clearly indicates that our analytic solution series (45) and (46) are indeed the
solution of the two original Eqs. (13) and (14).
4. Conclusion

In this paper, a new analytic method for highly nonlinear problems, namely the homotopy anal-
ysis method, is employed to give an explicit, totally analytic and uniformly valid solution of the
famous Von Kármán swirling flow. Our analytic solution agrees well with numerical results (as
shown in Figs. 1 and 2 and Tables 1 and 2).

We emphasize that our solution is explicit and purely analytic, i.e. the structure of the solution
is known and the constant coefficients are given by recursive formula and it is unnecessary to use
any numerical methods to get any coefficients. Note also that, different from equations governing
Blasius and Falker–Skan boundary layer flows, the nonlinear Eqs. (13) and (14) are directly de-
duced from the exact Navier–Stokes equations without other assumptions.

Note that Eqs. (13) and (14) are fully coupled and highly nonlinear. This verifies that the
homotopy analysis method is valid even for sets of fully coupled, highly nonlinear differential
equations, and therefore can be applied to many other complicated nonlinear problems in science
and engineering, especially in fluid mechanics which contains rich nonlinear phenomena.
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