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We issue the new version BVPh 2.0 of the Mathematica package BVPh, a
free software based on the homotopy analysis method (HAM) for non-
linear boundary-value and eigenvalue problems. The aim of the pack-
age BVPh is to develop a kind of analytic tool for as many nonlinear
boundary value problems (BVPs) as possible such that multiple so-
lutions of highly nonlinear BVPs can be conveniently found out, and
that the infinite interval and singularities of governing equations and/or
boundary conditions at multi-points can be easily resolved. Unlike its
previous versions, BVPh 2.0 works for systems of coupled nonlinear or-
dinary differential equations. It is user-friendly and free available on-
line (http://numericaltank.sjtu.edu.cn/BVPh.htm). Different from
numerical packages (such as BVP4c), it is based on the idea “comput-
ing numerically with functions instead of numbers”. Especially, un-
like other packages, the convergence of results given by the BVPh 2.0

is guaranteed by means of the so-called convergence-control parameter
in the frame of the homotopy analysis method. In this chapter, we
briefly describe how to install and use the BVPh 2.0 with a simple user’s
guide. Five typical examples (governed by up to four coupled ODEs)
are used to illustrate the validity of the BVPh 2.0, and the correspond-
ing input data of these examples for the BVPh 2.0 are free available on-
line (http://numericaltank.sjtu.edu.cn/BVPh.htm). The BVPh 2.0

indeed provides us with an easy-to-use tool to efficiently solve various
types of coupled linear/nonlinear ordinary differential equations.

361



October 24, 2013 10:44 World Scientific Review Volume - 9in x 6in Advances/Chap. 9

362 Y.-L. Zhao and S.-J. Liao

Contents

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

9.2. Installation of the BVPh 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

9.3. Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

9.4. Brief mathematical formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

9.4.1. Boundary value problems in a finite interval . . . . . . . . . . . . . . . 372

9.4.2. Eigenvalue-like problems in a finite interval . . . . . . . . . . . . . . . . 375

9.4.3. Problems in a semi-infinite interval . . . . . . . . . . . . . . . . . . . . 375

9.5. Approximation and iteration of solutions . . . . . . . . . . . . . . . . . . . . . 376

9.5.1. Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

9.5.2. Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

9.5.3. Hybrid-base functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

9.6. A simple user guide of the BVPh 2.0 . . . . . . . . . . . . . . . . . . . . . . . 380

9.6.1. Key modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

9.6.2. Control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

9.6.3. Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

9.6.4. Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

9.6.5. Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

9.7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

9.7.1. Example 1: A system of ODEs in finite interval . . . . . . . . . . . . . 385

9.7.2. Example 2: A system of ODEs with algebraic property at infinity . . . 388

9.7.3. Example 3: A system of ODEs with an unknown parameter . . . . . . 393

9.7.4. Example 4: A system of ODEs in different intervals . . . . . . . . . . . 397

9.7.5. Example 5: Iterative solutions of the Gelfand equation . . . . . . . . . 401

9.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Appendix A. Codes for examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

A.1. Sample codes to run the illustrative example . . . . . . . . . . . . . . . . . . . 406

A.2. Input data of BVPh 2.0 for the illustrative example . . . . . . . . . . . . . . . 406

A.3. Input data of BVPh 2.0 for Example 1 . . . . . . . . . . . . . . . . . . . . . . 408

A.4. Input data of BVPh 2.0 for Example 2 . . . . . . . . . . . . . . . . . . . . . . 409

A.5. Input data of BVPh 2.0 for Example 3 . . . . . . . . . . . . . . . . . . . . . . 411

A.6. Input data of BVPh 2.0 for Example 4 . . . . . . . . . . . . . . . . . . . . . . 412

A.7. Input data of BVPh 2.0 for Example 5 . . . . . . . . . . . . . . . . . . . . . . 414

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

9.1. Introduction

Ordinary differential equations (ODEs) are widely used in mathematics,

science and engineering. The so-called initial value problems (IVPs) specify

some restrictions only at a single point. This kind of problems is often

solved by means of numerical approach based on integration, such as the

Runge–Kutta method. However, in many cases, a solution is described in

a more complicated way. The so-called boundary value problems (BVPs)
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may specify some restrictions at more than one point. Unlike IVPs, BVPs

might have multiple solutions, or may satisfy some restrictions at infinity.

Hence, generally speaking, BVPs are more difficult to solve than IVPs.

Thanks to the development of mathematical software such as Maple,

Mathematica and MATLAB, some packages are developed to solve nonlin-

ear BVPs, such as the BVP4c, the Chebfun, the NOPH, and the BVPh. The

famous MATLAB package BVP4c [1, 2] implements a collocation method,

instead of a shooting method. The collocation polynomial provides a C1-

continuous solution that is fourth-order accurate uniformly in [a, b]. Mesh

selection and error control are based on the residual of the continuous so-

lution. However, it is not easy for the BVP4c to resolve the singularity in

governing equations and/or boundary conditions. Besides, the BVP4c re-

gards an infinite interval as a kind of singularity and replaces it by a finite

one: this leads to the additional inaccuracy and uncertainty of solutions.

The Chebfun [3, 4] is a collection of algorithms on the “chebfun” ob-

jects written in MATLAB. It aims to combine the feel of symbolics with

the speed of numerics. The basis of the Chebfun is Chebyshev expan-

sions, fast Fouries transform, baryentric interpolation and so on. The idea

“computing numerically with functions instead of numbers” [4] behind the

Chebfun makes it have the potential to handle unbounded domains and

singularities in an easy way. Although linear differential equations can be

solved in a single step by Chebfun without iteration, only a few exam-

ples for nonlinear differential equations are given [3, 4]. Actually, Chebfun

uses Newton’s iteration to solve nonlinear problems. However, it is well

known that the convergence of Newton’s iteration is strongly dependent

upon initial guesses and thus is not guaranteed. Besides, Chebfun searches

for multiple solutions of nonlinear differential equations by using different

guess approximations. However, it is not very clear how to choose these

different guess approximations.

Based on the homotopy in topology, the so-called homotopy analysis

method (HAM) was proposed by Liao [8–14] to gain analytic approxima-

tions of highly nonlinear problems. The HAM has some advantages over

other traditional analytic approximation methods. First, unlike perturba-

tion techniques, the HAM is independent of small/large physical param-

eters, and thus is valid in more general cases. Besides, different from all
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other analytic techniques, the HAM provides us a convenient way to guar-

antee the convergence of series solution. Furthermore, the HAM provides

extremely large freedom to choose initial guess, equation-type and solution

expression of linear sub-problems. It is found [13, 14] that lots of nonlinear

BVPs in science, engineering and finance can be solved conveniently by

means of the HAM, no matter whether the interval is finite or not.

Since the early HAM was proposed by Liao [9] in 1992, the HAM has

been developed greatly in theory and widely applied to numerous nonlinear

problems in lots of fields, with hundreds of publications. So, it is neces-

sary to develop a HAM-based software to simplify the applications of the

HAM. Based on the HAM, a Mathematica package BVPh 1.0— for nonlin-

ear boundary value/eigenvalue problems with singularity and/or multipoint

boundary conditions was issued by Liao [14] in May 2012, which is free avail-

able online (http://numericaltank.sjtu.edu.cn/BVPh.htm). Its aim is

to develop a kind of analytic tool for as many nonlinear BVPs as possible

such that multiple solutions of highly nonlinear BVPs can be conveniently

found out, and that the infinite interval and singularities of governing equa-

tions and/or boundary conditions at multi-points can be easily resolved. As

illustrated by Liao [14], the BVPh 1.0 is valid for lots of nonlinear BVPs

and thus is a useful tool in practice.

Currently, based on the HAM, the Maple package NOPH [5] for periodi-

cally oscillating systems of center and limit cycle types is developed, which

delivers accurate approximations of frequency, mean of motion and am-

plitude of oscillation automatically. The NOPH combines Wu’s elimination

method and the homotopy analysis method (HAM). It is free available on-

line (http://numericaltank.sjtu.edu.cn/NOPH.htm). Different from the

BVPh 1.0, the NOPH is for periodic oscillations. This illustrates the general

validity of the HAM for nonlinear problems once again.

It is a pity that the BVPh 1.0 can only deal with BVPs of single ordi-

nary differential equation (ODE), say, it can not solve systems of coupled

ODEs. In this chapter we issue the new version BVPh 2.0, which works for

many types of systems of coupled nonlinear ordinary differential equations

(ODEs) in finite and/or semi-infinite intervals. Besides, new algorithms are

used in some modules of BVPh 2.0. As a result, BVPh 2.0 is much faster

than BVPh 1.0 in most cases. In this chapter, we illustrate how to use
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BVPh 2.0 to solve different kinds of systems of coupled nonlinear ODEs,

including a system of two coupled ODEs in finite interval, a system of two

coupled ODEs in semi-infinite interval, a system of two coupled ODEs with

algebraic property at infinity, a system of three coupled ODEs with an un-

known parameter to be determined, and a system of four coupled ODEs in

different intervals.

This chapter is organized as follows. In § 9.2, we show how to install

the package BVPh 2.0. In § 9.3, we take an example to illustrate how to

use BVPh 2.0 in detail. In § 9.4, we briefly describe some mathematical

formulas based on which the BVPh 2.0 is developed. In § 9.5, the iterative

technique is illustrated for two typical kinds of base-functions in finite in-

tervals. A simple user guide of BVPh 2.0 is given in § 9.6. Some typical

examples are given in § 9.7 to illustrate the potential of the BVPh 2.0 and

to show its validity. In § 9.8, some discussions are given. The reader is

suggested to read § 9.3 at first for an illustrative example. If one is puzzled

with some parameters, one is encouraged to search for them in § 9.6, and

read the detailed description there.

In order to check the validity and correctness of the BVPh 2.0, we choose

all of our typical examples from published articles, which were solved ei-

ther analytically (by the HAM) or numerically before. As illustrated in

this chapter, the package BVPh 2.0 always gives results, which agree well

with the published ones. The validity of the BVPh 2.0 is checked for each

example in the following way:

(1) the squared residual error usually decreases to as low as 10−10, and

decreases at least 6 orders of magnitude;

(2) the same physical quantities of interest are gained as the published

ones;

(3) analytic solutions gained by BVPh 2.0 agree well with the published

ones.

Note that the package BVPh 2.0 is developed with Mathematica 7.0. As

some new features of Mathematica 7.0 are used, we strongly recommend

you to use the BVPh 2.0 in Mathematica 7.0 or higher version, since it

might not work for some lower version of Mathematics.
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9.2. Installation of the BVPh 2.0

The BVPh is a free/open-source software written in Mathematica for bound-

ary value problems (BVPs). Its newest version BVPh 2.0 is available on-

line (http://numericaltank.sjtu.edu.cn/BVPh.htm). The input data

for this chapter’s examples can also be found there. Since the commands of

Mathematica are designed to be the same on different operating systems,

the package written in Mathematica on Windows can be used in Mathe-

matica on other operating systems.

The source file of the package BVPh 2.0 is BVPh2_0.m. The easiest

way to load the package BVPh 2.0 to solve your problem is to put the

file BVPh2_0.m and the input data for the problem, e.g., Example.m, in

the same directory, then open a new notebook file and saved it as, e.g.,

runExample.nb, in the same directory and run the following codes.

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

SetDirectory[ToFileName[Extract["FileName" /.

NotebookInformation[EvaluationNotebook[]], {1},

FrontEnd‘FileName]]];

<<BVPh2_0.m;

<<Example.m;

Note that the listings without an end-of-line semicolon is wrapped to fit

the page width of this chapter. However, if you break the long command

intentionally in Mathematica, it will not work as you expected. The above

commands first clear all global variables, then set the current working direc-

tory to “the current directory”. Here “the current directory” is where you

put the source file BVPh2_0.m, the input data Example.m and the notebook

file runExample.nb. The last two lines read in the package BVPh2_0.m and

Example.m in the notebbook runExample.nb.

If you are familiar with Mathematica’s file and directory operations,

you can put the file BVPh2_0.m and the input data of the problem in dif-

ferent directories, then specifies the path where to get them. It is worth

emphasizing that the pathname separator is “\\” under Windows, and “/”

elsewhere. The sample codes to get the file BVPh2_0.m and the input data
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Example.m in the notebook file runExample.nb are as follows on Windows.

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

<<"E:\\Package\\BVPh2_0.m";

<<"E:\\Project\\Example\\Example.m";

Here we assume the file BVPh2_0.m in the directory E:\Package and the

input data Example.m in a different directory E:\Project\Example. The

above sample codes may look like the following on Unix

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

<< "/home/user/Package/BVPh2_0.m";

<< "/home/user/Example/Example.m";

Here we assume BVPh2_0.m in the directory /home/user/Package/ and the

input data Example.m in a different directory /home/user/Example.

From now on, we will assume that the package BVPh 2.0 has been

successfully loaded so that the modules in the package are available. In the

next section, we will use an illustrative example to show how to write the

input data and how to get the approximations by BVPh 2.0.

9.3. Illustrative example

Consider a system of ODEs [6]

f ′′′ − (f ′)2 + ff ′′ + 2λg + β[2ff ′f ′′ − f2f ′′′] = 0, (9.1)

g′′ − f ′g + fg′ − 2λf ′ + β[2ff ′g′ − f2g′′] = 0, (9.2)

subject to

f ′(0) = 1, f(0) = 0, g(0) = 0, (9.3)

f ′(∞) = 0, g(∞) = 0, (9.4)

where λ is rotation parameter, β is viscoelastic parameter, and the prime

indicates the differentiation with respect to η. This system models two-

dimensional flow of an upper convected Maxwell fluid in a rotating frame.

Sajid [6] has solved it by the HAM.
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To solve this problem by BVPh 2.0, we have to input the differential

equations, boundary conditions, initial guesses and convergence-control pa-

rameters. The differential equations (9.1) and (9.2) can be coded as follows

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=

D[f,{z,3}]-D[f,z]^2+f*D[f,{z,2}]+2*la*g+

beta*(2*f*D[f, z]*D[f,{z,2}]-f^2*D[f,{z,3}]);

f[2,z_,{f_,g_},Lambda_]:=

D[g,{z,2}]-D[f,z]*g+f*D[g,z]-2*la*D[f,z]+

beta*(2*f*D[f, z]*D[g, z]-f^2*D[g,{z, 2}]);

Here TypeEQ controls the type of governing equations: TypeEQ=1 cor-

responds to a system of ODEs without an unknown to be determined,

TypeEQ=2 corresponds to a system of ODEs with an unknown, Lambda, to

be determined. Since all the parameters in the problem will be given, we

set TypeEQ to 1. Note that we use the delayed assignment SetDelayed(:=)

in Mathematica to define these ODEs to avoid the evaluation when the

assignment is made.

The boundary conditions (9.3) and (9.4) are defined in a semi-infinite

interval, from 0 to +∞. They are coded as

NumBC = 5;

BC[1,z_,{f_,g_}]:=(D[f, z]-1)/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->0;

BC[3,z_,{f_,g_}]:=g/.z->0;

BC[4,z_,{f_,g_}]:=D[f,z]/.z->infinity;

BC[5,z_,{f_,g_}]:=g/.z->infinity;

Here NumBC is the number of boundary conditions of the problem. For

this problem, we have 5 boundary conditions, so NumBC is set to 5. The

symbol infinity is introduced in our package to denote ∞. When an

expression contains infinity, the limit of the expression is computed as

z approaches ∞. The delayed assignment (:=) is also used to avoid the

evaluation when the assignment is made — the same reason as defining the

differential equations.
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For a multi-layer problem, the differential equations in the system are

not necessarily in the same interval (see Example 4 in § 9.7). Hence, we

have to give each equation its solution interval. To measure the accuracy of

the approximate solutions, we have to compute the squared residual error

over the corresponding solution interval. In practice, when the differential

equation is defined in a semi-infinite interval, we simply truncate the infinite

interval to a finite interval to compute the squared residual error, or it will

take a lot of computation time. For this problem, the solution interval for

each equation and the integral interval for the squared residual error are

defined as

zL[1] = 0;

zR[1] = infinity;

zL[2] = 0;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

Here zL[k] (or zR[k]) is the left (or right) endpoint of the solution inter-

val for the kth equation f[k,z,{f,g},Lambda]. And zLintegral[k] (or

zRintegral[k]) is the left (or right) endpoint of the integral interval to

compute the squared residual error for the kth equation. If the value of

zL[k] (or zR[k]) is a finite number, zLintegral[k] (or zRintegral[k])

is set to the same value automatically. However, if any of them contains the

symbol infinity, we have to set the corresponding endpoint of the integral

interval to a finite value. That is why we write explicitly zRintegral[1]=10

and zRintegral[2]=10. For this problem, the squared residual is inte-

grated over the range [0, 10] for both equations.

The auxiliary linear operators for this problem are chosen as L1 =
∂3

∂η3 − ∂
∂η , L2 = ∂2

∂η2 − 1, which are coded as

L[1,u_] := D[u,{z,3}]-D[u,z];

L[2,u_] := D[u,{z,2}]-u;

Here L[k,u] is the auxiliary linear operator corresponding to the kth equa-

tion. Note that i) η is the independent variable in the differential equations
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(9.1) and (9.2), while z is the universal independent variable in the package

BVPh 2.0; ii) the delayed assignment SetDelayed(:=) is used to define the

operator; iii) u is a formal parameter.

For this problem, the initial guesses are f0 = 1 − e−z and g0 = ze−z.

They are coded as

U[1,0] = 1-Exp[-z];

U[2,0] = alpha*z*Exp[-z];

Here alpha is an introduced convergence-control parameter that will be

determined later. U[k,0] is the initial guess of the kth equation. Note that

U[k,0] and u[k,0] are usually the same in the package BVPh 2.0.

We want to solve this problem when the physical parameters β = 1/5

and λ = 1/10. These two parameters are coded as

beta = 1/5;

la = 1/10;

So far, we have defined all the input of this problem properly, except

the convergence-control parameter c0[k] and alpha. Usually, the optimal

values of the convergence-control parameters are obtained by minimizing

the averaged squared residual error. For this problem, we get the approxi-

mate optimal values of c0[1], c0[2] and alpha by minimizing the squared

residual error of the 3rd-order approximation as

GetOptiVar[3, {}, {c0[1],c0[2],alpha}];

The first parameter of GetOptiVar denotes which order approximation is

used. Here 3 means the 3rd-order approximation is used. The second

parameter denotes a list of constraints used in the optimization. When

the second parameter of GetOptiVar is an empty list, it means the aver-

aged squared residual is minimized without any constraint. Here we add

no constraints to minimize the averaged squared residual error. The third

parameter is a list of the variables to be optimized. Here we want to opti-

mize c0[1], c0[2] and alpha. After some computation, it gives the opti-

mized convergence-control parameters c0[1]=-1.26906, c0[2]=-1.19418
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and alpha=-0.0657063.

Now we can use

BVPh[1,10]

to get the 10th-order approximation. If we are not satisfied with the accu-

racy of the 10th-order approximation, we can use BVPh[11,20], instead of

BVPh[1,20], to get 20th-order approximation or higher order approxima-

tion.

The kth-order approximation of the ith differential equation is stored

in U[i,k]. We can use

Plot[{U[1,20], U[2,20]}, {z,0,10},

AxesLabel->{"\[Eta]", ""},

PlotStyle->{{Thin, Red},{Dashed, Blue}}]

to plot the 20th-order approximate solution, which is shown in Fig. 9.1.

The accuracy of the kth-order approximation is measured by the aver-

aged squared residual. We can use

ListLogPlot[Table[{2*i,ErrTotal[2*i]},{i,1,10}],

Joined->True,Mesh->All,

PlotRange->{{2,20},{10^(-15),10^(-5)}},

AxesLabel->{"m", "error"}];

to plot the curve of the total error versus the order of approximation, which

is shown in Fig. 9.2. Note that ErrTotal[k] stores the total error of the

system when the kth-order approximation is used, while Err[k] is a list

that stores the error for each ODE in the system when the kth-order ap-

proximation is used.
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Fig. 9.1. The curve of f(z) (solid) and g(z) (dashed) for the illustrative example when
β = 1/5, λ = 1/10.
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Fig. 9.2. Total error vs. order of approximation for the illustrative example when
β = 1/5, λ = 1/10.

9.4. Brief mathematical formulas

The BVPh 2.0 is based on the HAM. It is an extension of BVPh 1.0 to

systems of ODEs. Here the mathematical formulas are briefly described.

9.4.1. Boundary value problems in a finite interval

Consider a system of NumEQ ordinary differential equations (ODEs),

Fi[z, u1, u2, · · · ] = 0, z ∈ [zLi, zRi], 1 6 i 6 NumEQ, (9.5)
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subject to the NumBC linear boundary conditions

Bk[z, u1, u2, · · · ] = γk, 1 6 k 6 NumBC, (9.6)

where Fi is a nonlinear differential operator, Bk is a linear differential op-

erator, z is the independent variable, ui(z) is a smooth function, NumEQ is

a positive integer, γk, zLi and zRi are constants, respectively. The bound-

ary conditions may be defined at multipoints including the two endpoints.

Assume that at least one solution exists, and that all solutions are smooth.

Let q ∈ [0, 1] denote an embedding parameter, ui,0(z) an initial guess of

the solution ui(z), respectively. In the frame of the HAM, we construct such

a continuous deformation φi(z; q) that, as q increases from 0 to 1, φi(z; q)

varies continuously from the initial guess ui,0(z) to the true solution ui(z)

of (9.5) and (9.6). Such kind of continuous deformations are governed by

the so-called zeroth-order deformation equations

(1− q)Li[φi(z; q)− ui,0(z)] = qc0,iHi(z)Fi[φ1(z; q), φ2(z; q), · · · ],
z ∈ [zLi, zRi], q ∈ [0, 1], 1 6 i 6 NumEQ (9.7)

where Li is an auxiliary linear operator, c0,i is the so-called convergence-

control parameter, Hi(z) is an auxiliary function, corresponding to the ith

governing equation in (9.5), respectively.

Note that the HAM provides us extremely large freedom to choose the

auxiliary linear operator Li, the convergence-control parameter c0,i and

the auxiliary function Hi(z), 1 6 i 6 NumEQ. Assume that all of them are

properly chosen so that the homotopy-Maclaurin series

φi(z; q) = ui,0(z) +

+∞∑

k=1

ui,k(x)q
k (9.8)

absolutely converges at q = 1, where

ui,m = Dm[φ(z; q)] =
1

m!

∂mφ(z; q)

∂qm

∣∣∣∣
q=0

. (9.9)

Here, Dm is called the mth-order homotopy-derivative operator [8]. Then,

we have the so-called homotopy-series solution

ui(z) = ui,0 +

+∞∑

m=1

ui,m(z), (9.10)
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where ui,m is governed by the so-called mth-order deformation equation

Li[ui,m(z)− χmui,m−1(z)] = c0,iHi(z)δi,m−1(z), z ∈ [zLi, zRi], (9.11)

subject to the NumBC homogeneous linear boundary conditions

Bk[z, u1, u2, · · · ] = 0, 1 6 k 6 NumBC, (9.12)

where

χm =

{
0, m ≤ 1,

1, m > 1,
(9.13)

and

δi,m−1(z) = Dm−1{Fi[φ1(z; q), φ2(z; q), · · · ]}

= Dm−1

{
Fi
[
m−1∑

i=0

u1,i(z)q
i,

m−1∑

i=0

u2,i(x)q
i, · · ·

]}
(9.14)

can be easily obtained by means of the theorems proved in Ref. 8.

The mth-order approximation of ui(z) is given by

ui(x) ≈ Ui,m(x) =

m∑

k=0

ui,k(z). (9.15)

To measure the accuracy of the mth-order approximations Ui,m, 1 6 i 6

NumEQ, the averaged squared residual error for the system (9.5) is defined

as

Em =

NumEQ∑

i=1

∫ zRintegral[i]

zLintegral[i] |Fi[U1,m, U2,m, · · · ]|2 dz
zRintegral[i]− zLintegral[i]

. (9.16)

Here zLintegral[i] and zRintegral[i] are two endpoints of the integral

interval over which the squared residual of the ith governing equation is

integrated. Theoretically speaking, the smaller Em, the more accurate

the mth-order approximation Ui,m(z). Given the initial guess ui,0(z), the

auxiliary linear operator Li and the auxiliary function Hi(z), the squared

residual error Em is dependent on the convergence-control parameters c0,i,

i = 1, 2, · · · , NumEQ. Hence, the optimal values of c0,i can be determined by

the minimum of Em at some proper order m.

Note that i) for boundary value problems without an unknown to be

determined, we should set the control parameter TypeEQ = 1 for the BVPh

2.0; ii) the intervals [zLi, zRi] are not necessarily the same, so the package

can solve multi-layer problems without any modification.
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9.4.2. Eigenvalue-like problems in a finite interval

Consider a system of NumEQ ordinary differential equations (ODEs)

Fi[z, u1, u2, · · · , λ] = 0, z ∈ [zLi, zRi], 1 6 i 6 NumEQ, (9.17)

subject to the NumBC linear boundary conditions,

Bk[z, u1, u2, · · · ] = γk, 1 6 k 6 NumBC. (9.18)

Note that there is an unknown parameter λ in the system (9.17), and

the boundary conditions (9.18) include an additional boundary condition

determining the unknown λ. This additional boundary condition is the

zeroth boundary condition in BVPh 1.0. However, it is treated the same

as the other boundary conditions in BVPh 2.0, that is, any one of the

boundary conditions in (9.18) can be the additional boundary condition

provided that NumEQ− 1 is the order of the system (9.17).

All related formulas are the same as those given in § 9.4.1, except that

a deformation Λ(q) is also constructed such that Λ(q) varies continuously

from the initial guess λ0 to λ as q increases from 0 to 1.

Note that, when the BVPh 2.0 is used to solve eigenvalue-like problems

in a finite interval, we should set TypeEQ=2.

9.4.3. Problems in a semi-infinite interval

When the right endpoint zRi of the solution interval in (9.5) is +∞, the

governing equation is defined in a semi-infinite interval [zLi,+∞]. The

BVPh can solve this kind of problem without truncating the domain. This

feature is quite different from BVP4c, which regards a semi-infinite interval

as a kind of singularity and replaces it by a finite one.

All related formulas are the same as those given in § 9.4.1, except that

the finite intervals z ∈ [zLi, zRi] are replaced by the semi-infinite ones

z ∈ [zLi,∞]. However, completely different initial guesses ui,0(z) and aux-

iliary linear operators Li are used for this kind of problems, because their

solutions are expressed by completely different base functions.

Note that i) when the BVPh 2.0 is used to solve problems in a semi-

infinite interval, the symbol infinity is used to denote ∞ in input data; ii)

the boundary conditions at infinity are considered as a limiting process;
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iii) to get the error of the approximations, we have to provide finite intervals

over which the squared residuals are integrated, as the numerical integration

method is used in BVPh 2.0; iv) the integral interval for squared residual

error can be set through zLintegral[i] and zRintegral[i]. For example,

zLintegral[i]=0 and zRintegral[i]=10 means the squared residual of

the ith governing equation is integrated over [0, 10].

9.5. Approximation and iteration of solutions

Although the high-order deformation equations (9.11) are always linear,

they are still not easy to solve in general, because the right-hand side term

δi,m−1 may be rather complicated. To solve this problem, we can approxi-

mate δi,m−1 in the form

δi,m−1 ≈
Nt∑

k=0

bkek(z)

where ek denotes the base-function, Nt denotes the number of truncated

terms, the coefficient bk is uniquely determined by δi,m−1(z) and the base-

functions ek(z).

To further accelerate the rate of convergence, we can employ the itera-

tion approach by using the Mth-order approximation as a new initial guess

u∗i,0(z), i.e.,

ui,0(z) +

M∑

m=1

ui,m(z) → u∗i,0(z).

The above expression provides us the so-called Mth-order iteration for-

mula. In this way, the convergence of the homotopy-series can be greatly

accelerated.

The iteration approach of the BVPh 2.0 is currently possible only when

the base functions are of polynomials, trigonometric functions and hybrid-

base functions. We consider here the approximation of a smooth function

f(z) in these three different kinds of base functions. The approximation of

a function in a semi-infinite interval is proposed in Ref. 20 in the frame of

HAM.
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9.5.1. Polynomials

It is well known that a smooth function f(z) in the finite interval z ∈ [−1, 1]

can be well approximated by the Chebyshev polynomials

f(x) ≈ a0
2

+

Nt∑

k=1

akTk(z), (9.19)

where Tk(z) is the kth Chebyshev polynomial of the first kind, Nt denotes

the number of Chebyshev polynomials, and

ak =
2

Nt + 1

Nt+1∑

i=1

f(xi)Tk(xi),

=
2

Nt + 1

Nt+1∑

i=1

f

[
cos

{
π(i − 1

2 )

Nt + 1

}]
cos

{
πk(i − 1

2 )

Nt + 1

}
.

When Chebyshev polynomial is used to approximate the boundary

value/eigenvalue problems in a finite interval z ∈ [a, b] by means of the

BVPh 2.0, we should set TypeL = 1, ApproxQ = 1.

9.5.2. Trigonometric functions

It is well known that the Fourier series

a0
2

+
+∞∑

n=1

(
an cos

nπz

a
+ bn sin

nπz

a

)

of a continuous function f(z) in a finite interval z ∈ (−a, a) converges to

f(z) in the interval z ∈ (−a, a), where

an =
1

a

∫ a

−a

f(t) cos
nπt

a
dt, bn =

1

a

∫ a

−a

f(t) sin
nπt

a
dt.

For a continuous function f(z) in [0, a], we can define f(z) = f(−z) in

z ∈ [−a, 0) and its Fourier series reads

f(z) =
a0
2

+

+∞∑

n=1

an cos
nπz

a
. (9.20)

Alternatively, we can define f(z) = −f(−z) in z ∈ [−a, 0) and its Fourier

series reads

f(z) ∼
+∞∑

n=1

bn sin
nπz

a
. (9.21)
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Note that in (9.21), we write ”∼” instead of ”=”, because it holds only if

f(0) = f(a) = 0 is assumed.

In practice, we have the following approximations

f(z) ≈ a0
2

+

Nt∑

n=1

an cos
nπz

a
(9.22)

or

f(z) ≈
Nt∑

n=1

bn sin
nπz

a
, (9.23)

where Nt denotes the number of truncated terms.

When the above-mentioned trigonometric functions are used to solve

boundary value/eigenvalue problems in a finite interval z ∈ [0, a] by means

of the BVPh 2.0, we should set TypeL = 2, ApproxQ = 1 and HYBRID = 0

with TypeBase = 1 for the odd expression (9.23) and TypeBase = 2 for

the even expression (9.22), respectively.

9.5.3. Hybrid-base functions

Note that the first-order derivative of the even Fourier series (9.20) equals

to zero at the two endpoints z = 0 and z = a, but the original function

f(z) may have arbitrary values of f ′(0) and f ′(a). So, in case of f ′(0) 6= 0

and/or f ′(a) 6= 0, one had to use many terms of the even Fourier series

(9.20) so as to obtain an accurate approximation near the two endpoints.

To overcome this disadvantage, we first express f(z) by such a combination

f(z) ≈ Y (z) + w(z), (9.24)

where

Y (z) =

(
f ′(0)z − f ′(0) + f ′(a)

2a
z2
)
cos

πz

a
(9.25)

and then approximate w(z) = f(z)− Y (z) by the even Fourier series

w(z) ≈ ā0
2

+

Nt∑

n=1

ān cos
nπz

a
(9.26)

with the Fourier coefficient

ān =
2

a

∫ a

0

[f(t)− Y (t)] cos
nπt

a
dt.
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Here Nt is the number of truncated terms. Note that Y (z) in (9.25) satisfies

Y ′(0) = f ′(0), Y ′(a) = f ′(a)

so that w′(0) = w′(a) = 0. Therefore, we often need a few terms of the

even Fourier series to accurately approximate w(z). Note also that both the

trigonometric and polynomial functions are used in (9.24) to approximate

f(z). It is found that, by means of such kind of approximations based on

hybrid-base functions, one often needs much less terms to approximate a

given smooth function f(z) in [0, a] than the traditional Fourier series.

Alternatively, for a continuous function f(z) in [0, a], we can use

Y (z) = f(0) +
f(a)− f(0)

a
z (9.27)

or

Y (z) =
f(0) + f(a)

2
+
f(0)− f(a)

2
cos

πz

a
, (9.28)

and approximate w(z) by the odd Fourier series

w(z) ≈
Nt∑

n=1

b̄n sin
nπz

a
, (9.29)

where

b̄n =
2

a

∫ a

0

[f(t)− Y (t)] sin
nπt

a
dt.

Note that Y (z) in (9.27) and (9.28) satisfies

Y (0) = f(0), Y (a) = f(a)

so that w(0) = w(a) = 0.

It is suggested to use the hybrid-base approximation (9.24) with (9.25)

for an even function f(z), and (9.24) with (9.27) or (9.28) for an odd func-

tion f(z), respectively. If f(z) is neither an odd nor even function, both of

them work.

When the above-mentioned hybrid-base approximation is used, we have

even larger freedom to choose the initial guess u0(z). For example, for a

2nd-order boundary value/eigenvalue problem in a finite interval z ∈ [0, a],

we may choose such an initial guess in the form

u0(z) = B0 +B1 cos
κπz

a
+B2 sin

κπz

a
(9.30)
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or

u0(z) = (B0 +B1z +B2z
2) cos

κπz

a
, (9.31)

where B0, B1 and B2 are determined by linear boundary conditions, κ is a

positive integer.

When the above-mentioned trigonometric functions are used to solve

boundary value/eigenvalue problems in a finite interval z ∈ [0, a] by means

of the BVPh 2.0, we should set TypeL = 2, ApproxQ = 1 and HYBRID = 1

with TypeBase = 1 for the odd expression (9.29) and TypeBase = 2 for

the even expression (9.26), respectively.

9.6. A simple user guide of the BVPh 2.0

In this section, we will take a glance at the Mathematica package BVPh 2.0.

9.6.1. Key modules

BVPh The module BVPh[k_,m_] gives the kth to mth-order homotopy

approximations of a system of ordinary differential equations (ODEs)

subject to some boundary conditions. The systemmay have an unknown

parameter (when TypeEQ = 2) or may not have an unknown parameter

(when TypeEQ = 1). It is the basic module. For example, BVPh[1,10]

gives the 1st-order to 10th-order homotopy-approximations. Thereafter,

BVPh[11,15] further gives the 11th-order to 15th-order homotopy-

approximations. For problems with an unknown parameter, the initial

guess of the unknown parameter is determined by an algebraic equation.

Thus, if there are more than one initial guesses of the unknown param-

eter, it is required to choose one among them by inputting an integer,

such as 1 or 2, corresponding to the 1st or the 2nd initial guess of the

unknown parameter, respectively.

iter The module iter[k_,m_,r_] provides us homotopy approxima-

tions of the kth to mth iteration by means of the rth-order iteration for-

mula. It calls the basic module BVPh. For example, iter[1,10,3] gives

homotopy-approximations of the 1st to 10th iteration by the 3rd-order

iteration formula. Furthermore, iter[11,20,3] gives the homotopy-

approximations of the 11th to 20th iterations. The iteration stops when
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the averaged squared residual error of the system is less than a critical

value ErrReq, whose default is 10−20.

GetErr The module GetErr[k_] gives the averaged squared residual er-

ror of the governing equation at the kth-order homotopy-approximation

gained by the module BVPh. Note that, errer[i,k] provides the

residual of the ith governing equation at the kth-order homotopy-

approximation gained by BVPh, and ErrTotal[k] gives the total av-

eraged squared residual error of the system at the kth-order homotopy-

aprroximation gained by BVPh.

hp The module hp[f_,m_,n_] gives the [m,n] homotopy-padé approx-

imation of a list of the homotopy-approximations f, where f[[i+1]]

denotes the ith-order homotopy-approximation of the same governing

equation.

GetBC The module GetBC[i_,k_] gives the ith boundary condition of

the kth-order deformation equation.

9.6.2. Control parameters

TypeEQ A control parameter for the type of governing equations:

TypeEQ = 1 corresponding to a nonlinear problem without an unknown

parameter, TypeEQ = 2 corresponds to a nonlinear problem with an

unknown parameter (called eigenvalue problem or eigenvalue-like prob-

lem), respectively.

TypeL A control parameter for the type of auxiliary linear operator:

TypeL = 1 corresponds to polynomial approximation, and TypeL = 2

corresponds to a trigonometric approximation or a hybrid-base approx-

imation, respectively.

ApproxQ A control parameter for approximation of solutions. When

ApproxQ = 1, the right-hand side term of all higher-order deformation

equations are approximated by Chebyshev polynomials (9.19), trigono-

metric functions in § 9.5.2, or by the hybrid-base functions in § 9.5.3.

When ApproxQ = 0, there is no such kind of approximation. When

TypeL = 2, ApproxQ = 1 is valid only for problems in a finite interval

z ∈ [0, a], where a > 0 is a constant.

HYBRID A control parameter for the hybrid-base functions. When

HYBRID = 1, hybrid-base functions are employed in approximation.
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When HYBRID = 0, trigonometric functions without polynomials are

employed in approximation. This parameter is usually used in conjunc-

tion with TypeBase, and is valid only when TypeL = 2 and ApproxQ = 1

for problems in a finite interval z ∈ [0, a].

TypeBase A control parameter for the type of Fourier series approxi-

mation: TypeBase = 1 corresponds to the odd Fourier approximation

(9.23) or (9.29), TypeBase = 2 corresponds to the even Fourier approx-

imation (9.22) or (9.26), respectively. This parameter is usually used

in conjunction with HYBRID, and is valid only when TypeL = 2 and

ApproxQ = 1 for problems in a finite interval z ∈ [0, a].

Ntruncated A control parameter to determine the number of truncated

terms used to approximate the right-hand side of higher-order deforma-

tion equations. The larger Ntruncated, the better the approximations,

but the more CPU time. It is valid only when ApproxQ = 1. The default

is 10.

NtermMax A positive integer used in the module truncated, which ig-

nores all polynomial terms whose order is higher than NtermMax. The

default is 90.

ErrReq A critical value of the averaged squared residual error of govern-

ing equations to stop the computation. The default is 10−20.

NgetErr A positive integer used in the module BVPh. The averaged

squared residual error of governing equations is calculated when the

order of approximation is divisible by NgetErr. The default is 2.

Nintegral Number of discrete points with equal space, which are used

to numerically calculate the integral of a function. It is used in the

module int. The default is 50.

ComplexQ A control parameter for complex variables. ComplexQ = 1

corresponds to the existence of complex variables in governing equa-

tions and/or boundary conditions. ComplexQ = 0 corresponds to the

nonexistence of such kind of complex variables. The default is 0.

FLOAT A control parameter for floating-point computation. When

FLOAT = 1, floating-point numbers are employed in computation. When

FLOAT = 0, rational numbers are employed in computation. The default

is 1.
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9.6.3. Input

NumEQ The number of governing equations.

f[i ,z ,{u ,· · · },lambda ] The ith governing equation with or without

an unknown parameter, corresponding to Fi[z, u, · · · ] or Fi[z, u, · · · , λ]
in either a finite interval z ∈ [a, b] or a semi-infinite interval z ∈ [b,+∞),

where a and b are bounded constants. Note that the formal parameter

lambda denotes the unknown parameter λ to be determined, or the

eigenvalue λ for eigenvalue problems, but has no meaning at all for

problems without an unknown parameter λ, or non-eigenvalue problems.

NumBC The number of boundary conditions.

BC[k ,z ,{u ,· · · }] The kth boundary condition corresponding to

Bk[z, u, · · · ], where 1 ≤ k ≤ NumBC. Note that the symbol infinity

denotes ∞ in boundary conditions.

U[i,0] The initial guess Ui,0(z), i.e., ui,0(z).

c0[i] The convergence-control parameter c0,i, corresponding to the ith

governing equation.

H[i ,z ] The auxiliary function corresponding to the ith governing

equation. The default is H[i_,z_]:=1.

L[i ,f ] The auxiliary linear operator corresponding to the ith govern-

ing equation.

zL[i] The left endpoint of the interval of the solution corresponding to

the ith governing equation. Note that intervals of the solutions are not

necessarily the same, especially for multi-layer flow problem.

zR[i] The right endpoint of the interval of the solution corresponding

to the ith governing equation.

zLintegral[i] The left endpoint of the integral interval to compute the

averaged squared residual error of the ith governing equation. When the

left endpoint of the solution interval for the ith governing equation is a

finite number, zLintegral[i] is automatically set to zL[i]. Otherwise,

the user has to specify the value of zLintegral[i].

zRintegral[i] The right endpoint of the integral interval to compute

the averaged squared residual error of the ith governing equation. When

the right endpoint of the solution interval for the ith governing equa-

tion is a finite number, zRintegral[i] is automatically set to zR[i].

Otherwise, the user has to specify the value of zRintegral[i].
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9.6.4. Output

U[i,k] The kth-order homotopy-approximation of the solution to the

ith governing equation given by the basic module BVPh.

V[i,k] The kth-iteration homotopy-approximation of the solution to the

ith governing equation given by the iteration module iter.

Lambda[k] The kth-order homotopy-approximation of the eigenvalue λ

or the unknown parameter λ given by the basic module BVPh.

LAMBDA[k] The kth-iteration homotopy-approximation of the eigenvalue

λ or the unknown parameter λ given by the iteration module iter.

error[i,k] The residual of the ith governing equation given by the kth-

order homotopy-approximation (obtained by the basic module BVPh).

Err[k] A list of the averaged squared residual error of each governing

equation given by the kth-order homotopy-approximation (obtained by

the basic module BVPh).

ErrTotal[k] The total of the averaged squared residual error for each

governing equation given by the kth-order homotopy-approximation

(obtained by the basic module BVPh).

ERR[k] A list of the averaged squared residual error of each governing

equation given by the kth-iteration homotopy-approximation (obtained

by the iteration module iter).

ERRTotal[k] The total of the averaged squared residual error for each

governing equation given by the kth-iteration homotopy-approximation

(obtained by the iteration module iter).

9.6.5. Global variables

All control parameters and output variables mentioned above are global.

Besides these, the following variables and parameters are also global.

z The independent variable z.

u[i,k] The solution to the kth-order deformation equation of the ith

governing equation.

lambda[k] A constant variable, corresponding to λk.

delta[i,k] A function dependent upon z, corresponding to the right-

hand side term δi,k(z) in the high-order deformation equation.

L[i,w] The ith auxiliary linear operator Li applied to w.
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Linv[i,f] The inverse operator of Li, corresponding to L−1
i , applied to

f .

sNum A positive integer to determine which initial guess λ0 is chosen

when there are multiple solutions of λ0.

9.7. Examples

More examples are given in this section to show the usage the package

BVPh 2.0.

9.7.1. Example 1: A system of ODEs in finite interval

Consider a system of coupled ODEs [7]

(1 +K)f ′′′′ −ReMf ′′ + 2Reff ′′′ −Kg′′ = 0, (9.32)
(
1 +

K

2

)
g′′ −ReK[2g − f ′′] +Re[2fg′ − f ′g] = 0, (9.33)

subject to

f(0) = 0, f(1) = 0, f ′(1) = 1, f ′′(0) = 0, (9.34)

g(1) = 0, g(0) = 0, (9.35)

where K is the ratio of viscosities, Re is the Reynolds number and M is

the Hartman number. Hayat [7] has solved this problem by the HAM.

Here we solve this problem by BVPh 2.0. Since there are two ODEs

in system (9.32)–(9.33) without an unknown to be determined, we have

NumEQ = 2 and TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=(1+K)*D[f,{z,4}]

-Rey*M*D[f,{z,2}]+2*Rey*f*D[f,{z,3}]-K*D[g,{z,2}];

f[2,z_,{f_,g_},Lambda_]:=(1+K/2)*D[g,{z,2}]

-Rey*K*(2*g-D[f,{z,2}])+Rey*(2*f*D[g,z]-D[f,z]*g);

The six boundary conditions are defined as
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NumBC = 6;

BC[1,z_,{f_,g_}]:=f/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->1;

BC[3,z_,{f_,g_}]:=(D[f, z]-1)/.z->1;

BC[4,z_,{f_,g_}]:=D[f,{z,2}]/.z->0;

BC[5,z_,{f_,g_}]:=g/.z->1;

BC[6,z_,{f_,g_}]:=g/.z->0;

Now let us input the solution intervals

zL[1]=0; zR[1]=1;

zL[2]=0; zR[2]=1;

Since all the solution intervals are finite, we do not have to specify the

integral interval to compute the averaged squared residual error.

The initial guesses are chosen as f0 = (z3 − z)/2 and g0 = 0. They are

input as

U[1,0] = (z^3-z)/2;

U[2,0] = 0;

The auxiliary linear operators are chosen as L1 = ∂4

∂z4 and L2 = ∂2

∂z2 .

They are defined as

L[1,u_]:=D[u,{z,4}];

L[2,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these

linear operators.

Without loss of generality, let us consider the case when Re = M = 2

and K = 1/2. These physical parameters are input as

Rey = M = 2;

K = 1/2;

At this time, we have input all the data for this problem, except the

convergence-control parameters c0[k]. Hayat [7] chose the convergence-
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control parameters c0[1]=c0[2]=-0.7 through ~-curve. Here we minimize

the averaged squared residual error of the 4th-order approximations to get

optimal values for c0[k]

GetOptiVar[4,{},{c0[1],c0[2]}];

The convergence-control parameters c0[1] and c0[2] are found to be about

−0.5825 and −0.721452, respectively.

Then we call the main module BVPh to get the 20th-order approxima-

tions

BVPh[1, 20];

The 20th-order approximations are stored in U[i,20],i=1,2, while

the corresponding averaged squared residual error of the system is

ErrTotal[20]. We can use

Plot[{U[1,20],U[2,20]},{z,0,1},AxesLabel->{"z",""},

PlotStyle->{{Thin, Red}, {Dashed, Blue}},

PlotRange->{{0, 1}, {-0.2, 0.2}}]

to plot the 20th-order approximations, which is shown in Fig. 9.3. This

figure agrees with Hayat’s Figs. 9 and 12 whenM = 2, Re = 2 andK = 0.5.

The 20th-order approximations give the values of f ′′(1) = 3.61076396287

and g′(1) = −0.738463496789, which are the same with Hayat’s result

[7]. The total error ErrTotal[k] of the system for every two order of

approximations is plotted by the command

ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 10}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 20}, {10^(-34), 1}},

AxesLabel -> {"m", "error"}]

in Fig. 9.4. We can see from it that the error decreases beautifully.
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Fig. 9.3. The curve of f(z) (solid), g(z) (dashed) for Example 1.
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Fig. 9.4. Total error vs. order of approximation for Example 1.

9.7.2. Example 2: A system of ODEs with algebraic

property at infinity

Consider a set of two coupled nonlinear differential equations [13]

f ′′′(η) + θ(η) − f ′2 = 0, (9.36)

θ′′(η) = 3σf ′(η)θ(η), (9.37)

subject to

f(0) = f ′(0) = 0, θ(0) = 1, f ′(+∞) = θ(+∞) = 0, (9.38)

where the prime denotes differentiation with respect to the similarity vari-

able η, σ is the Prandtl number, f(η) and θ(η) relate to the velocity profile
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and temperature distribution of the boundary layer, respectively. Liao [13]

employed the HAM to solve this system analytically. Now we use the

BVPh 2.0 to solve it.

Under the transformation

ξ = 1 + λη, F (ξ) = f ′(η), S(ξ) = θ(η), (9.39)

Eqs. (9.36) and (9.37) become

λ2F ′′(ξ) + S(ξ)− F 2(ξ) = 0, (9.40)

λ2S′′(ξ) = 3σF (ξ)S(ξ), (9.41)

subject to

F (1) = 0, S(1) = 1, F (+∞) = S(+∞) = 0. (9.42)

Since there are two ODEs in system (9.40)–(9.41) without an unknown

to be determined, we have NumEQ = 2 and TypeEQ=1. This new system is

defined as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{F_,S_},Lambda_]:=la^2*D[F,{z,2}]+S-F^2;

f[2,z_,{F_,S_},Lambda_]:=la^2*D[S,{z, 2}]-3*sigma*F*S;

The four boundary conditions (9.42) are defined as

NumBC = 4;

BC[1,z_,{F_, S_}] := F /. z -> 1;

BC[2,z_,{F_, S_}] := (G - 1) /. z -> 1;

BC[3,z_,{F_, S_}] := F /. z -> infinity;

BC[4,z_,{F_, S_}] := G /. z -> infinity;

Now let us input the solution intervals and integral intervals to compute

averaged squared residual error

zL[1] = 1; zR[1] = infinity;

zL[2] = 1; zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;
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The initial guesses are chosen as F0 = γ(ξ−2−ξ−3), S0 = ξ−4, and they

are input as

U[1, 0] = gamma*(z^(-2) - z^(-3));

U[2, 0] = z^(-4);

The auxiliary linear operators are LF = ξ
3
∂2

∂ξ2 +
∂
∂ξ and LS = ξ

5
∂2

∂ξ2 +
∂
∂ξ ,

which are defined as

L[1, u_] := D[u, {z, 2}]*z/3 + D[u, z];

L[2, u_] := D[u, {z, 2}]*z/5 + D[u, z];

Without loss of generality, let us consider the case when σ = 1, γ = 3

and λ = 1/3. We use the same convergence-control parameters c0[1] =

c0[2]= −1/2 as Liao [13]. These physical parameters and the control

parameters c0[k] are defined as

sigma = 1; gamma = 3;

la = 1/3; c0[1] = -1/2; c0[2] = -1/2;

Then we call the main module BVPh

BVPh[1, 20];

to get the 20th-order approximation. If we are not satisfied with the accu-

racy of the 20th-order approximation, we can use BVPh[21,40], instead of

BVPh[1,40], to get 40th-order approximation or higher order approxima-

tion.

Note that U[1,40] and U[2,40] are the 40th-order approximations of

the transformed system (9.40), (9.41) and (9.42). To plot the curve of the

40th-order approximations for the original problem, we first replace z with

1+λη to obtain the 40th-order approximations for f ′(η) and g(η), then plot

the curve we want. This is done in Mathematica by the following command
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trans = {z -> 1 + la*\[Eta]};

Plot[Evaluate[{U[1, 40], U[2, 40]} /. trans],

{\[Eta], 0, 10},PlotRange -> {{0, 10}, {0, 1}},

AxesLabel -> {"\[Eta]", ""},

PlotStyle -> {{Thin, Red}, {Dashed, Blue}}]

and the curve is shown in Fig. 9.5. Here trans={z->1+la*\[Eta]} is the

corresponding transformation, and \[Eta] is the symbol η in Mathematica.

The total error ErrTotal[k] of the transformed system for every two

order approximations is plotted in Fig. 9.6 by the following command

ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 20}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 40}, {10^(-10), 0.01}},

AxesLabel -> {"m", "error"}]

Note that ErrTotal[k] not only measures the accuracy of the kth-order

approximations for the transformed problem, but also measures the corre-

sponding approximations for the original problem.

0 2 4 6 8 10
Η0.0

0.2

0.4

0.6

0.8
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Fig. 9.5. The curve of f ′(η) (solid) and θ(η) (dashed) for Example 2.
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Fig. 9.6. Total error vs. order of approximation for Example 2.

The 40th-order approximations of f ′′(0) and g′′(0) are 0.693268 and

−0.769879, respectively. Kuiken’s numerical result is f ′′(0) ≈ 0.693212 and

g′(0) ≈ −0.769861. To get more accurate result, we have two choices. One

is to call the module BVPh to get higher order approximation as before, the

other is to apply the Padé approximation to the current approximations.

The latter is done by calling the module hp as follows

hp[Table[D[(U[1,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

hp[Table[D[(U[2,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

which give 0.693212 and −0.769861, the [20, 20] homotopy-Padé approxi-

mations of f ′′(0) and g′(0), respectively.

Note that we can compare the curve of 2nth-order approximation and

the [n, n] homotopy-Padé approximation in a simple and efficient way. Here

we compare U[1,40] and the [20, 20] homotopy-Padé approximation of

U[1,i], i = 0 · · · 40, in the Mathematica by the following command.

Plot[{U[1, 40]/.trans, hp[Table[U[1,i]/.trans,

{i, 0, 40}],20, 20]},{\[Eta],0,10},PlotRange->Full,

AxesLabel->{"\[Eta]", ""},

PlotStyle->{{Thin,Red},{Dashed,Blue}}
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Fig. 9.7. The curve of 40th-order approximation of f ′(η) (solid) and [20, 20] homotopy-
Padé approximations of f ′(η) (dashed) for Example 2.

The comparison is shown in Fig. 9.7. From it we can see that the two are

almost the same. This validate the convergence of the approximations to

some extent. The above command is very efficient, because the Plot com-

mand in Mathematica first substitute the sample points into the expression

and then applies the hp to a list of numerical values, rather than applies

the hp to a list of expressions and then substitute the sample points into

the resulting expression.

9.7.3. Example 3: A system of ODEs with an unknown

parameter

Consider a system of ODEs [15]

U ′′ + (GrPr)θ −Nrφ+ σ = 0, (9.43)

θ′′ +Nbθ
′φ′ +Nt(θ

′)2 +Nb +Nt − U = 0, (9.44)

φ′′ +
Nt

Nb
θ′′ − LeU = 0, (9.45)

subject to

U(−1) = U(1) = 0, θ(−1) = θ(1) = 0, φ(−1) = φ(1) = 0, (9.46)

with an additional condition
∫ 1

0

UdY = RePr, (9.47)
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where Gr is the Grashof number, Pr the Prandtl number, Nr the buoyancy

ratio, σ the pressure parameter, Nb the Brownian motion parameter, Nt

the thermophoresis parameter, Le the Lewis number, and Re the Reynolds

number. All of the above parameters will be given for a special case except

σ, which is to be determined from the system. Xu [15] solved this problem

by the HAM.

Here we solve this problem by BVPh 2.0. Since there are three ODEs

in system (9.43)–(9.45) with an unknown σ to be determined, we have

NumEQ = 3 and TypeEQ=2. The system is input as

TypeEQ = 2; NumEQ = 3;

f[1,z_,{f_,g_,s_},sigma_] :=

D[f,{z,2}]+Gr*Pr*g-Nr*s+sigma;

f[2,z_,{f_,g_,s_},sigma_] :=

D[g,{z,2}]+Nb*D[g,z]*D[s,z]+Nt*(D[g,z])^2-f;

f[3,z_,{f_,g_,s_},sigma_] :=

D[s,{z,2}]+Nt/Nb*D[f,{z,2}]-Le*f;

The seven boundary conditions, including the additional condition

(9.47), are defined as

NumBC = 7;

BC[1,z_,{f_,g_,s_}] :=f/.z->-1;

BC[2,z_,{f_,g_,s_}] :=f/.z->1;

BC[3,z_,{f_,g_,s_}] :=g/.z->-1;

BC[4,z_,{f_,g_,s_}] :=g/.z->1;

BC[5,z_,{f_,g_,s_}] :=s/.z->-1;

BC[6,z_,{f_,g_,s_}] :=s/.z->1;

BC[7,z_,{f_,g_,s_}] :=Integrate[f,{z,0,1}]-Ra*Pr;

Now let us input the solution intervals

zL[1] = -1; zR[1] = 1;

zL[2] = -1; zR[2] = 1;

zL[3] = -1; zR[3] = 1;

Since all the solution intervals are finite, we do not have to specify the
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integral interval to compute the averaged squared residual error.

The initial guesses are chosen as U0 = ε1 − 3(−25 + ε1)z
2/2 + 5(−15 +

2ε1)z
4/2, θ0 = ε2(1 − z2) and φ0 = ε3(1 − z2), where ε1, ε2 and ε3 are

constants to be optimized. They are input as

U[1,0]=eps1-3/2*(-25+4eps1)z^2+5/2*(-15+2eps1)*z^4;

U[2,0]=eps2*(1-z^2);

U[3,0]=eps3*(1-z^2);

The auxiliary linear operators are chosen as L1 = L2 = L3 = ∂2

∂Y 2 .

They are defined as

L[1, u_] := D[u, {z, 2}];

L[2, u_] := D[u, {z, 2}];

L[3, u_] := D[u, {z, 2}];

Note that we use the delayed assignment SetDelayed(:=) to define these

linear operators.

Without loss of generality, let us consider the case when Nr = 3/20,

Nt = Nb = 1/20, Le = 10, Gr = 5, Pr = 1, and Re = 5. These physical

parameters are input as

Nr = 3/20; Nt = 1/20;

Nb = 1/20; Le = 10;

Gr = 5; Pr = 1; Ra = 5;

At this time, we have input all the data for this problem, except the

convergence-control parameters c0[k], eps1, eps2 and eps3. We minimize

the averaged squared residual error of the 3th-order approximations to get

optimal values for these parameters by the module GetOptiVar as follow

c0[1] = c0[2] = c0[3] = h;

GetOptiVar[3, {}, {eps1, eps2, eps3, h}];

Note that we put constraints c0[1]=c0[2]=c0[3] on c0[1], c0[2] and

c0[3] to simplify the computation. There is no constraint on eps1, eps2

and eps3.
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After some computation, we get optimal values for all the convergence-

control parameters c0[1] = c0[2] = c0[3] ≈ −0.769452, eps1 ≈ 7.56408,

eps2 ≈ −2.58887 and eps3 ≈ −30.0044. Now we can use

BVPh[1,10]

to get the 10th-order approximation. If we are not satisfied with the ac-

curacy of the 10th-order approximation, we can use BVPh[11,20] to get

20th-order approximation or higher order approximation.

-1.0 -0.5 0.5 1.0
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Fig. 9.8. The curve of U (solid), θ (dashed) and φ(z) (dot dashed) for Example 3.

The 20th-order approximations of U , θ and φ are stored in U[1,20],

U[2,20] and U[3,20], the 20th-order approximation of σ is stored in

Lambda[19], while the corresponding averaged squared residual error of

the system is stored in ErrTotal[20]. Lambda[19] is about 18.272555944,

which is the same with Xu’s result [15]. The 20th-order approximations

are plotted in Fig. 9.8. The total error of the system for every two order of

approximations is plotted in Fig. 9.9.
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Fig. 9.9. Total error vs. order of approximation for Example 3.

9.7.4. Example 4: A system of ODEs in different intervals

Consider a two-phase flow [16]:

(i) Region 1

d2u1
dy2

+
Gr

Re
sin(φ)θ1 = P, (9.48)

d2θ1
dy2

+ PrEc

(
du1
dy

)2

= 0, (9.49)

(ii) Region 2

d2u2
dy2

+
Gr

Re

nbh2

λ
sin(φ)θ2 −

M2h2

λ
u2 =

h2

λ
P, (9.50)

d2θ2
dy2

+ EcPr
λ

λT

(
du2
dy

)2

+ EcPr
h2

λT
M2u22 = 0, (9.51)

subject to

u1(1) = 1, θ1(1) = 1, (9.52)

u1(0) = u2(0), θ1(0) = θ2(0), (9.53)

u′1(0) =
λ

h
u′2(0), θ

′
1(0) =

λT
h
θ′2(0), (9.54)

u2(−1) = 0, θ2(−1) = 0, (9.55)

whereGr is the Grashof number, Ec is the Eckert number, Pr is the Prandtl

number, Re is the Reynolds number, M is the Hartmann number and P
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is the dimensionless pressure gradient. This model describes a two-fluid

magnetohydrodynamic Poiseuille–Couette flow and heat transfer in an in-

clined channel. Umavathi [16] investigate this model analytically by regular

perturbation method and numerically by finite difference technique. The

BVPh 2.0 can solve this problem (9.48)–(9.55) directly without difficulty.

Since all the parameters in the system will be given, we have NumEQ = 4

and TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 4;

f[1,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[u1, {z, 2}]+ Gr/Ra*Sin[phi]*s1 - P ;

f[2,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[s1, {z, 2}] + Pr*Ec*(D[s1, z])^2;

f[3,z_,{u1_,s1_,u2_,s2_},Lambda_]:=D[u2,{z, 2}]-h^2/lamb*P

+Gr/Ra*Sin[phi]*n*b*h^2/lamb*s2-M^2*h^2/lamb*u2;

f[4,z_,{u1_,s1_,u2_,s2_},lambda_]:=D[s2,{z,2}]

+Pr*Ec*lamb/lambT*D[u2,z]^2+Pr*Ec*h^2/lambT*M^2*u2^2;

The eight boundary conditions (9.52)–(9.55) are defined as

NumBC=8;

BC[1,z_,{u1_,s1_,u2_,s2_}]:=(u1-1)/.z->1;

BC[2,z_,{u1_,s1_,u2_,s2_}]:=(u1-u2)/.z->0;

BC[3,z_,{u1_,s1_,u2_,s2_}]:=u2/.z->-1;

BC[4,z_,{u1_,s1_,u2_,s2_}]:=(D[u1,z]-D[u2,z]*lamb/h)/.z->0;

BC[5,z_,{u1_,s1_,u2_,s2_}]:=(s1-1)/.z->1;

BC[6,z_,{u1_,s1_,u2_,s2_}]:=(s1-s2)/.z->0;

BC[7,z_,{u1_,s1_,u2_,s2_}]:=s2/.z->-1;

BC[8,z_,{u1_,s1_,u2_,s2_}]:=(D[s1,z]-D[s2,z]*lambT/h)/.z->0;

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1; (* u1 *)

zL[2] = 0; zR[2] = 1; (* s1 *)

zL[3] = -1; zR[3] = 0; (* u2 *)

zL[4] = -1; zR[4] = 0; (* s2 *)
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Note that the solution intervals are not the same. Since all the solution

intervals are finite, we do not have to specify the integral interval to compute

the averaged squared residual error.

The initial guesses are chosen as u1,0 =
λ
h (z− z2)+ 1, θ1,0 = zλT

h +(1−
λT

h )z2, u2,0 = 1 + z and θ2,0 = z + z2. They are input as

U[1, 0] = (z - z^2)*lamb/h+1; (* u1 *)

U[2, 0] = z*lambT/h +(1-lambT/h)*z^2; (* s1 *)

U[3, 0] = 1 + z; (* u2 *)

U[4, 0] = z^2 + z; (* s2 *)

The auxiliary linear operators are chosen as L1 = L2 = L3 = L4 = ∂2

∂y2 .

They are defined as

L[1,u_]:=D[u,{z,2}];

L[2,u_]:=D[u,{z,2}];

L[3,u_]:=D[u,{z,2}];

L[4,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these

linear operators, and z is the independent variable in the package.

Without loss of generality, let us consider the case when Pr = 7/10,

Ec = 1/100, P = −5, b = 1, n = 1, Re = 1, M = 2, Gr = 5, h = 1, λ = 1,

λT = 1, and φ = π/6. These physical parameters are input as

P = -5; b = 1;

n = 1; Ra = 1;

M = 2; Gr = 5;

lamb = 1; lambT = 1;

h = 1; phi = Pi/6;

Pr = 7/10; Ec = 1/100;

At this time, we have input all the data for this problem, except the

convergence-control parameters c0[k]. We minimize the averaged squared

residual error of the 4th-order approximations to obtain optimal values for

c0[k] by the command
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GetOptiVar[4,{},{c0[1],c0[2],c0[3],c0[4]}];

Note that the second parameter of GetOptiVar is an empty list, which

means that we give no constraint on the convergence-control parameters

c0[k].

After some time, we obtain the optimal values for c0[k], which reads

c0[1] ≈ −0.898166, c0[2] ≈ −0.946828, c0[3] ≈ −0.780946 and c0[4]

≈ −1.12363. Then we call the main module BVPh to get the 30th-order

approximations

BVPh[1, 30];

The 30th-order approximations for u1, θ1, u2, θ2 are stored in U[1,30],

U[2,30], U[3,30] and U[4,30], respectively, while the corresponding aver-

aged squared residual error of the system is ErrTotal[30]. The 30th-order

approximations are plotted in Fig. 9.10. The value of θ(y) agrees with Uma-

vathi’s result [16] (black dots), as shown in Fig. 9.10. The 30th-order ap-

proximation of θ(y) gives the heat transfer rate Nu+ = θ′1(1) = 0.8860625

and Nu− = θ′2(1) = 1.122312, which agrees with Nu+ = 0.88606 and

Nu− = 1.12230 in Umavathi’s [16] Table 3. The total error ErrTotal[k]

of the system for every two order of approximations is plotted in Fig. 9.11.

-1.0 -0.5 0.0 0.5 1.0
z

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 9.10. The curve of u(y) (solid) and θ(y) (dashed) for Example 4. The black dots
are the values for θ(y) obtained by Umavathi [16].
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Fig. 9.11. Total error vs. order of approximation for Example 4.

9.7.5. Example 5: Iterative solutions of the Gelfand equation

When the problem is defined in a finite interval, the BVPh 1.0 can solve

it using an iterative approach. The BVPh 2.0 has inherited this feature.

However, there are some minor differences in the input.

Consider the Gelfand equation [17–19]

u′′ + (K − 1)
u′

z
+ λeu = 0, u′(0) = u(1) = 0, (9.56)

where the prime denotes the differentiation with respect to z, K ≥ 1 is

a constant, u(z) and λ denote eigenfunction and eigenvalue, respectively.

Following Liao [14] , an additional boundary condition

u(0) = A (9.57)

is added to distinguish different eigenfunctions.

To solve this problem by BVPh 2.0, we have to input the differential

equations, boundary conditions, and initial guesses. Since the problem is a

single ODE with an unknown λ to be determined, we set NumEQ = 1 and

TypeEQ=2. The differential equation can be coded as follows

TypeEQ = 2;

NumEQ = 1;

f[1,z_,{u_},lambda_] :=

D[u,{z,2}] +(K-1)*D[u,z]/z+lambda*Exp[u];
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The three boundary conditions, including the additional condition

(9.57), are defined as

NumBC = 3;

BC[1, z_, {u_}] := (u-A)/. z -> 0;

BC[2, z_, {u_}] := D[u,z]/. z -> 0;

BC[3, z_, {u_}] := u /. z -> 1;

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1;

Since the solution interval is finite, we do not have to specify the integral

interval to compute the averaged squared residual error.

The initial guess is chosen as U0 = A
2 [1 + cos(πz)], which is input into

Mathematica as

U[1,0] = A/2*(1 + Cos[Pi*z]);

The auxiliary linear operator is chosen as L = ∂2

∂z2 +
(
π
a

)2
, which is

defined in Mathematica as

L[1,f_] := D[f,{z,2}]+Pi^2*f;

Note that we use the delayed assignment SetDelayed(:=) to define the

linear operator.

Without loss of generality, let us consider the case when A = 1 and

K = 2. The physical parameters are input as

K = 2; A = 1;

Because we want to approximate the right-hand sides using the hybrid-

base function and use an iterative approach to get the approximations, the

control parameters in BVPh 2.0 are modified to
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TypeL = 2;

HYBRID = 1; (* hybrid-base functions *)

TypeBase = 2; (* even Fourier series *)

ApproxQ = 1;

Ntruncated = 30;

Here TypeL = 2, HYBRID = 1 and ApproxQ = 1 together mean that the

right-hand sides of all high-order deformation equations is approximated

by the hybrid-base approximations. TypeBase = 2 means the even ex-

pression (9.26) is used (TypeBase = 1 also applies to this problem).

Ntruncated = 20 means Nt = 30.

At this time, we have input all the data for this problem, except the

convergence-control parameter c0[1]. To get optimal c0[1], we minimize

the averaged squared residual error of the 6th-order approximations. This

is done in BVPh 2.0 by calling the module GetOptiVar

GetOptiVar[6, {}, {c0[1]}];

After some computation, we get the optimal value for the convergence-

control parameter c0[1]= −0.522418 · · · . Now we can use the 3rd-order

iteration HAM approach

iter[1,6,3]

to get the desired approximation. Here 6 means the iteration times. After

about 40 seconds, the 6th iteration gives the eigenvalue 1.90921, which

is the same with Liao’s result [14]. The kth iteration approximations of

u and λ are stored in V[1,k], and LAMBDA[k], while the corresponding

averaged squared residual error is stored in ERRTotal[k]. The 6th iteration

approximation is plotted in Fig. 9.12 by

Plot[V[1,6],{z,0,1},AxesLabel->{"z", "u(z)"}]
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Fig. 9.12. The curve of the eigenfunction u(z) corresponding to the eigenvalue λ =
1.90921 when A = 1 and K = 2 for Example 5.

The total error ERRTotal[k] of the problem for each iteration is plotted

in Fig. 9.13 by the command

ListLogPlot[Table[{i, ERRTotal[i]}, {i, 1, 6}],

PlotRange->{{1,6},{10^-10,0.01}},Joined->True, Mesh->All,

AxesLabel->{"m","error"}]
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0.01
error

Fig. 9.13. Total error for each iteration vs. iteration times m for Example 5.
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9.8. Conclusions

The homotopy analysis method (HAM) has been successfully applied to

solve lots of nonlinear problems in science and engineering. Based on the

HAM, the Mathematica package BVPh 1.0 was issued by Liao in May, 2012.

The aim of BVPh is to provide an analytic tool for as many nonlinear BVPs

as possible in the frame work of the HAM.

However, the BVPh 1.0 can only deal with problems of a single ODE.

Unlike BVPh 1.0, the new version BVPh 2.0 works for many types of sys-

tems of coupled nonlinear ODEs. In this chapter, we briefly describe how

to install and use the BVPh 2.0. Five typical examples are employed to

demonstrate the validity of BVPh 2.0, including a system of two coupled

ODEs in finite interval, a system of two coupled ODEs in semi-infinite

interval, a system of two coupled ODEs with algebraic property at in-

finity, a system of three coupled ODEs with an unknown parameter to

be determined, and a system of four coupled ODEs in different inter-

vals. Besides, new algorithms are used in some modules of BVPh 2.0.

Hence, BVPh 2.0 is much faster than BVPh 1.0 in most cases. The package

BVPh 2.0 and all input data for these examples are free available online at

http://numericaltank.sjtu.edu.cn/BVPh.htm.

It is well known that the iterative method can gain accurate approx-

imations more efficiently by means of the HAM. The BVPh 2.0 has also

inherited the feature of BVPh 1.0 to solve the problems in finite interval

using the iterative method. For problems in semi-infinite interval, an itera-

tive method for two typical kinds of based functions is proposed [20]. This

iterative approach will be employed in the future version of BVPh.

Appendix A. Codes for examples

Here are the input data for all the examples in this chapter. Note that the

listings without an end-of-line semicolon is wrapped to fit the page width.

However, if you break the long command intentionally in Mathematica, it

will run as multi-line commands and may not work as you expected.
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A.1. Sample codes to run the illustrative example

(* Filename: runIllustrative.nb *)

(* 1. Clear all global variables *)

ClearAll["Global‘*"];

(* 2. Read in the package BVPh 2.0 *)

<< "E:\\Package\\BVPh2_0.m"

(* 3. Set the current working directory to *)

(* "the current directory" *)

SetDirectory[ToFileName[Extract["FileName" /.

NotebookInformation[EvaluationNotebook[]], {1},

FrontEnd‘FileName]]];

(* 4. Read in your input data in current directory *)

(* Note that the two files runIllustrative.nb and *)

(* Illustrative.m are in the current directory *)

<< Illustrative.m

A.2. Input data of BVPh 2.0 for the illustrative example

(* Filename: Illustrative.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=

D[f,{z,3}]-D[f,z]^2+f*D[f,{z,2}]+2*la*g+

beta*(2*f*D[f, z]*D[f,{z,2}]-f^2*D[f,{z,3}]);

f[2,z_,{f_,g_},Lambda_]:=
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D[g,{z,2}]-D[f,z]*g+f*D[g,z]-2*la*D[f,z]+

beta*(2*f*D[f, z]*D[g, z]-f^2*D[g,{z, 2}]);

(* Define Boundary conditions *)

NumBC = 5;

BC[1,z_,{f_,g_}]:=(D[f, z]-1)/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->0;

BC[3,z_,{f_,g_}]:=g/.z->0;

BC[4,z_,{f_,g_}]:=D[f,z]/.z->infinity;

BC[5,z_,{f_,g_}]:=g/.z->infinity;

(* solution interval and integral interval for error *)

zL[1] = 0;

zR[1] = infinity;

zL[2] = 0;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

(* Define initial guess *)

U[1,0] = 1-Exp[-z];

U[2,0] = ahpha*z*Exp[-z];

(* Define the auxiliary linear operator *)

L[1,u_] := D[u,{z,3}]-D[u,z];

L[2,u_] := D[u,{z,2}]-u;

(* Define physical parameters *)

beta = 1/5;

la = 1/10;

(* Print input data *)

PrintInput[{f[z],g[z]}];

(* Get optimal c0 *)
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GetOptiVar[3, {}, {c0[1],c0[2],alpha}];

(* Gain 10th-order HAM approximation *)

BVPh[1, 10];

A.3. Input data of BVPh 2.0 for Example 1

(* Filename: Example1.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

ErrReq=10^-30;

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=(1+K)*D[f,{z,4}]

-Rey*M*D[f,{z,2}]+2*Rey*f*D[f,{z,3}]-K*D[g,{z,2}];

f[2,z_,{f_,g_},Lambda_]:=(1+K/2)*D[g,{z,2}]

-Rey*K*(2*g-D[f,{z,2}])+Rey*(2*f*D[g,z]-D[f,z]*g);

(* Define Boundary conditions *)

NumBC = 6;

BC[1,z_,{f_,g_}]:=f/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->1;

BC[3,z_,{f_,g_}]:=(D[f, z]-1)/.z->1;

BC[4,z_,{f_,g_}]:=D[f,{z,2}]/.z->0;

BC[5,z_,{f_,g_}]:=g/.z->1;

BC[6,z_,{f_,g_}]:=g/.z->0;

(* solution interval and integral interval for error *)

zL[1]=0;

zR[1]=1;

zL[2]=0;

zR[2]=1;
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(* Define initial guess *)

U[1,0] = (z^3-z)/2;

U[2,0] = 0;

(* Define the auxiliary linear operator *)

L[1,u_]:=D[u,{z,4}];

L[2,u_]:=D[u,{z,2}];

(* Define physical parameters *)

Rey = M = 2;

K = 1/2;

(* Print input data *)

PrintInput[{f[z],g[z]}];

(* Get optimal c0 *)

GetOptiVar[4,{},{c0[1],c0[2]}];

(* Gain 20th-order HAM approximation *)

BVPh[1, 20];

A.4. Input data of BVPh 2.0 for Example 2

(* Filename: Example2.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{F_,S_},Lambda_]:=la^2*D[F,{z,2}]+S-F^2;

f[2,z_,{F_,S_},Lambda_]:=la^2*D[S,{z, 2}]-3*sigma*F*S;
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(* Define Boundary conditions *)

NumBC = 4;

BC[1,z_,{F_, S_}] := F /. z -> 1;

BC[2,z_,{F_, S_}] := (G - 1) /. z -> 1;

BC[3,z_,{F_, S_}] := F /. z -> infinity;

BC[4,z_,{F_, S_}] := G /. z -> infinity;

(* solution interval and integral interval for error *)

zL[1] = 1;

zR[1] = infinity;

zL[2] = 1;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

(* Define initial guess *)

U[1, 0] = gamma*(z^(-2) - z^(-3));

U[2, 0] = z^(-4);

(* Defines the auxiliary linear operator *)

L[1, u_] := D[u, {z, 2}]*z/3 + D[u, z];

L[2, u_] := D[u, {z, 2}]*z/5 + D[u, z];

(* Define physical and control parameters *)

sigma = 1;

gamma = 3;

la = 1/3;

c0[1] = -1/2;

c0[2] = -1/2;

(* Print input data *)

PrintInput[{f[z], g[z]}];

(* Gain 20th-order HAM approximation *)

BVPh[1, 20];
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A.5. Input data of BVPh 2.0 for Example 3

(* Filename: Example3.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 2;

NumEQ = 3;

f[1,z_,{f_,g_,s_},sigma_] :=

D[f,{z,2}]+Gr*Pr*g-Nr*s+sigma;

f[2,z_,{f_,g_,s_},sigma_] :=

D[g,{z,2}]+Nb*D[g,z]*D[s,z]+Nt*(D[g,z])^2-f;

f[3,z_,{f_,g_,s_},sigma_] :=

D[s,{z,2}]+Nt/Nb*D[f,{z,2}]-Le*f;

(* Define boundary conditions *)

NumBC = 7;

BC[1,z_,{f_,g_,s_}] :=f/.z->-1;

BC[2,z_,{f_,g_,s_}] :=f/.z->1;

BC[3,z_,{f_,g_,s_}] :=g/.z->-1;

BC[4,z_,{f_,g_,s_}] :=g/.z->1;

BC[5,z_,{f_,g_,s_}] :=s/.z->-1;

BC[6,z_,{f_,g_,s_}] :=s/.z->1;

BC[7,z_,{f_,g_,s_}] :=Integrate[f,{z,0,1}]-Ra*Pr;

(* Define solution interval *)

zL[1] = -1;

zR[1] = 1;

zL[2] = -1;

zR[2] = 1;

zL[3] = -1;

zR[3] = 1;
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(* Defines the auxiliary linear operator *)

L[1, u_] := D[u, {z, 2}];

L[2, u_] := D[u, {z, 2}];

L[3, u_] := D[u, {z, 2}];

(* Define physical parameters *)

Nr = 1/5;

Nt = 1/20;

Nb = 1/20;

Le = 10;

Gr = 5;

Pr = 1;

Ra = 5;

(* Define initial guess *)

U[1,0]=eps1-3/2*(-25+4eps1)z^2+5/2*(-15+2eps1)*z^4;

U[2,0]=eps2*(1 - z^2);

U[3,0]=eps3*(1 - z^2);

(* Print input data *)

PrintInput[{f[z], g[z], s[z]}];

(* Get optimal convergence-control parameters *)

c0[1] = c0[2] = c0[3] = h;

GetOptiVar[3, {}, {eps1, eps2, eps3, h}];

(* Gain 10th-order HAM approximation *)

BVPh[1, 20];

A.6. Input data of BVPh 2.0 for Example 4

(* Filename: Example4.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)
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(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 4;

f[1,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[u1, {z, 2}]+ Gr/Ra*Sin[phi]*s1 - P ;

f[2,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[s1, {z, 2}] + Pr*Ec*(D[s1, z])^2;

f[3,z_,{u1_,s1_,u2_,s2_},Lambda_]:=D[u2,{z, 2}]

-h^2/lamb*P+Gr/Ra*Sin[phi]*n*b*h^2/lamb*s2

-M^2*h^2/lamb*u2;

f[4,z_,{u1_,s1_,u2_,s2_},lambda_]:=D[s2,{z,2}]

+Pr*Ec*lamb/lambT*D[u2,z]^2+Pr*Ec*h^2/lambT*M^2*u2^2;

(* Define Boundary conditions *)

NumBC=8;

BC[1,z_,{u1_,s1_,u2_,s2_}]:=(u1-1)/.z->1;

BC[2,z_,{u1_,s1_,u2_,s2_}]:=(u1-u2)/.z->0;

BC[3,z_,{u1_,s1_,u2_,s2_}]:=u2/.z->-1;

BC[4,z_,{u1_,s1_,u2_,s2_}]:=

(D[u1,z]-D[u2,z]/m/h)/.z->0;

BC[5,z_,{u1_,s1_,u2_,s2_}]:=(s1-1)/.z->1;

BC[6,z_,{u1_,s1_,u2_,s2_}]:=(s1-s2)/.z->0;

BC[7,z_,{u1_,s1_,u2_,s2_}]:=s2/.z->-1;

BC[8,z_,{u1_,s1_,u2_,s2_}]:=

(D[s1,z]-D[s2,z]/K/h)/.z->0;

(* Define solution interval *)

zL[1]=0; (* u1 *)

zR[1]=1;

zL[2]=0; (* s1 *)

zR[2]=1;

zL[3]=-1;(* u2 *)

zR[3]=0;

zL[4]=-1;(* s2 *)
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zR[4]=0;

(* Define initial guess *)

U[1, 0] = (z - z^2)*lamb/h+1; (* u1 *)

U[2, 0] = z*lambT/h +(1-lambT/h)*z^2; (* s1 *)

U[3, 0] = 1 + z; (* u2 *)

U[4, 0] = z^2 + z; (* s2 *)

(* Define the auxiliary linear operator *)

L[1,u_]:=D[u,{z,2}];

L[2,u_]:=D[u,{z,2}];

L[3,u_]:=D[u,{z,2}];

L[4,u_]:=D[u,{z,2}];

(* Define physical parameters *)

P = -5; b = 1;

n = 1; Ra = 1;

M = 2; Gr = 5;

lamb = 1; lambT = 1;

h = 1; phi = Pi/6;

Pr = 7/10; Ec = 1/100;

(* Print input data *)

PrintInput[{u1[z], s1[z], u2[z], s2[z]}];

(* Get optimal c0 *)

GetOptiVar[4,{},{c0[1],c0[2],c0[3],c0[4]}]

(* Gain 10th-order HAM approximation *)

BVPh[1,30];

A.7. Input data of BVPh 2.0 for Example 5

(* Filename: Example5.m *)

Print["The input file ",$InputFileName," is loaded !"];
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(* Modify control parameters in BVPh if necessary *)

TypeL = 2;

HYBRID = 1; (* hybrid-base functions *)

TypeBase = 2; (* even Fourier series *)

ApproxQ = 1;

Ntruncated = 20;

(* Define the governing equation *)

TypeEQ = 2;

NumEQ = 1;

f[1,z_,{u_},lambda_] :=

D[u,{z,2}] +(K-1)*D[u,z]/z+lambda*Exp[u];

(* Define Boundary conditions *)

NumBC = 3;

BC[1, z_, {u_}] := (u-A)/. z -> 0;

BC[2, z_, {u_}] := D[u,z]/. z -> 0;

BC[3, z_, {u_}] := u /. z -> 1;

(* Define solution interval *)

zL[1] = 0;

zR[1] = 1;

(* Define initial guess *)

U[1,0] = A/2*(1 + Cos[Pi*z]);

(* Define the auxiliary linear operator *)

L[1,f_] := D[f,{z,2}]+Pi^2*f;

(* Define physical parameters *)

K = 2;

A=1;

(* Print input data *)
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PrintInput[{u[z]}];

(* Get optimal c0 *)

GetOptiVar[6,{},c0[1]];

(* Print input data *)

PrintInput[{u[z]}];

(* Use 3rd-order iteration approach *)

iter[1,6,3]
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