
User Guide to BVPh 2.0

Yinlong Zhao and Shijun Liao∗

School of Naval Architecture, Ocean and Civil Engineering

Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The Mathematica package BVPh is a free/open source software based
on homotopy analysis method (HAM) for boundary value problems (B-
VPs). This tutorial shows how to use its newest version BVPh 2.0 to
solve and plot the solutions of boundary value problems (BVPs) for sys-
tems of ordinary differential equations. The input data for all the ex-
amples in this tutorial are in the appendix and available online (http:
//numericaltank.sjtu.edu.cn/BVPh.htm).

1 Introduction

The homotopy analysis method (HAM) has been proposed by Liao1–7 to gain
analytic approximations of highly nonlinear problems. The HAM has some ad-
vantages over other traditional analytic approximation methods. First, unlike
perturbation techniques, the HAM is independent of small/large physical pa-
rameters, and thus is valid in more general cases. Besides, different from all
other analytic techniques, the HAM provides us a convenient way to guarantee
the convergence of series solution. Furthermore, the HAM provides extremely
large freedom to choose initial guess and equation-type of linear sub-problems.
It is found5,6 that lots of nonlinear BVPs in science, engineering and finance can
be solved conveniently by means of the HAM, no matter whether the interval
is finite or not.

Based on the HAM, a Mathematica Package BVPh 1.0 for nonlinear bound-
ary value/eigenvalue problems with singularity and/or multipoint boundary
conditions was issued by Liao6 in May 2012, which is available online (http:
//numericaltank.sjtu.edu.cn/BVPh.htm). Its aim is to develop a kind of an-
alytic tool for as many nonlinear BVPs as possible such that multiple solutions
of highly nonlinear BVPs can be conveniently found out, and that the infinite
interval and singularities of governing equations and/or boundary conditions at
multi-points can be easily resolved. As illustrated by Liao,6 the BVPh 1.0 is
valid for lots of nonlinear BVPs and thus is a useful tool in practice.

∗Corresponding author. E-mail address: sjliao@sjtu.edu.cn

1

http://numericaltank.sjtu.edu.cn/BVPh.htm
http://numericaltank.sjtu.edu.cn/BVPh.htm
http://numericaltank.sjtu.edu.cn/BVPh.htm
http://numericaltank.sjtu.edu.cn/BVPh.htm

However, the BVPh 1.0 can only deal with BVPs of single ordinary differen-
tial equation (ODE), it can not solve systems of ODEs. Now the newest version
of BVPh, the BVPh 2.0, can deal with many systems of coupled ordinary differ-
ential equations (ODEs) defined in finite an/or semi-infinite intervals. Besides,
new algorithms are used in some modules of BVPh 2.0. Hence, BVPh 2.0 is
much faster than BVPh 1.0 in most cases. In this tutorial, we will show the us-
age of BVPh 2.0 to solve different kinds of systems of ODEs, including a system
of coupled ODEs in finite interval, a system of coupled ODEs in semi-infinite
interval, a system of coupled ODEs with algebraic property at infinity, a system
of ODEs with an unknown parameter to be determined and a system of ODEs
in different intervals.

This tutorial is organized as follows. In Section 2, we show how to load
the package BVPh 2.0. In Section 3, an illustrative example is taken to show
the use of BVPh 2.0 in detail. In Section 4, we take a glance at the modules,
input, output and control parameters in the package. More examples are given
in Section 5 to show the usage of the package. In Section 6, some conclutions
are given. The reader is suggested to learn the illustrative example in Section
3 first. If one is puzzled with some parameter, one is encouraged to search the
parameter in Section 4, and read its description there.

It should be pointed out that all the examples in this tutorial have been
solved analytically (by the HAM) and/or numerically before. The package
BVPh 2.0 gives agreeable results when the same physical parameters are given.
However, this tutorial focus on how to use the package BVPh 2.0 to solve the
problem, the validness of the approximations is shown i) always in the error
curve of the approximations—the squared residual error usually decrease to as
low as 10−10 and decreases at least 6 orders of magnitude; ii) sometimes in
the value of the physical quantity of interest; iii) rarely in comparison with the
numerical results in the figure.

The package BVPh 2.0 is developed on Mathematica 7.0. As some new
features of Mathematica 7.0 are used, we strongly recommend you to use the
BVPh 2.0 in Mathematica 7.0 or higher version, or it will not work.

2 Installation

The BVPh is a free/open-source software written in Mathematica for boundary
value problems (BVPs). Its newest version BVPh 2.0 is available online (http:
//numericaltank.sjtu.edu.cn/BVPh.htm). Since the commands of Mathe-
matica are designed to be the same on different operating systems, the package
written in Mathematica on Windows can be used in Mathematica on other
operating systems.

The source file of the package BVPh 2.0 is BVPh2_0.m. The easiest way
to load the package BVPh 2.0 to solve your problem is to put the source file
BVPh2_0.m and the input data for the problem, e.g., Example.m, in the same
directory, then open a new notebook file and saved it as, e.g., runExample.nb,
in the same directory and run the following codes.

2

http://numericaltank.sjtu.edu.cn/BVPh.htm
http://numericaltank.sjtu.edu.cn/BVPh.htm

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

SetDirectory[ToFileName[Extract["FileName" /.

NotebookInformation[EvaluationNotebook[]], {1},

FrontEnd‘FileName]]];

<<BVPh2_0.m;

<<Example.m;

Note that the listings without an end-of-line semicolon is wrapped to fit the page
width. However, if you break a long command intentionally in Mathematica, it
will run as multi-line commands and may not work as you expected. The above
commands first clear all global variables, then set the current working directo-
ry to “the current directory”. Here “the current directory” is where you put
BVPh2_0.m, the input data Example.m and the notebook file runExample.nb.
The last two lines read in the files BVPh2_0.m and Example.m in the notebbook
runExample.nb.

If you are familiar with Mathematica’s file and directory operations, you can
put the file BVPh2_0.m and the input data of the problem in different directories,
then specifies the path where to get them. It is worth emphasizing that the
pathname separator is “\\” under Windows, and “/” elsewhere. The sample
codes to get the file BVPh2_0.m and the input data Example.m in the notebook
file runExample.nb are as follows on Windows:

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

<<"E:\\Package\\BVPh2_0.m";

<<"E:\\Project\\Example\\Example.m";

Here we assume the source file BVPh2_0.m in the directory E:\Package and the
input data Example.m in a different directory E:\Project\Example. The above
sample codes may look like the following on Unix.

(* Filename: runExample.nb *)

ClearAll["Global‘*"];

<< "/home/user/Package/BVPh2_0.m";

<< "/home/user/Example/Example.m";

Here we assume the file BVPh2_0.m in the directory /home/user/Package/ and
the input data Example.m in a different directory /home/user/Example.

From now on, we will assume that the package BVPh 2.0 has been successful-
ly loaded so that the modules in the package are available. In the next section,
we will use an illustrative example to show how to write the input data and how
to obtain the approximations by BVPh 2.0.

3

3 Illustrative example

Consider a system of ODEs8

f ′′′ − (f ′)2 + ff ′′ + 2λg + β[2ff ′f ′′ − f2f ′′′] = 0, (1)

g′′ − f ′g + fg′ − 2λf ′ + β[2ff ′g′ − f2g′′] = 0, (2)

subject to

f ′(0) = 1, f(0) = 0, g(0) = 0, (3)

f ′(∞) = 0, g(∞) = 0, (4)

where λ is the rotation parameter, β is the viscoelastic parameter, and the
prime indicates the differentiation with respect to η. This system models two-
dimensional flow of an upper convected Maxwell fluid in a rotating frame. It
has been solved by the HAM in Ref. 8.

To solve this problem by BVPh 2.0, we have to input the differential equa-
tions, boundary conditions, initial guesses and convergence-control parameters.
The differential equations (1) and (2) can be coded as follows

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=

D[f,{z,3}]-D[f,z]^2+f*D[f,{z,2}]+2*la*g+

beta*(2*f*D[f, z]*D[f,{z,2}]-f^2*D[f,{z,3}]);

f[2,z_,{f_,g_},Lambda_]:=

D[g,{z,2}]-D[f,z]*g+f*D[g,z]-2*la*D[f,z]+

beta*(2*f*D[f, z]*D[g, z]-f^2*D[g,{z, 2}]);

Here TypeEQ controls the type of governing equations: TypeEQ=1 corresponds to
a system of ODEs without an unknown to be determined, TypeEQ=2 corresponds
to a system of ODEs with an unknown, Lambda, to be determined. Since all the
parameters in the problem will be given, we set TypeEQ to 1. Note that we use
the delayed assignment SetDelayed(:=) in Mathematica to define these ODEs
to avoid the evaluation when the assignment is made.

The boundary conditions (3) and (4) are defined in a semi-infinite interval,
from 0 to +∞. They are coded as

NumBC = 5;

BC[1,z_,{f_,g_}]:=(D[f, z]-1)/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->0;

BC[3,z_,{f_,g_}]:=g/.z->0;

BC[4,z_,{f_,g_}]:=D[f,z]/.z->infinity;

BC[5,z_,{f_,g_}]:=g/.z->infinity;

Here NumBC is the number of boundary conditions of the problem. For this
problem, we have 5 boundary conditions, so NumBC is set to 5. The symbol

4

infinity is introduced in our package to denote ∞. When an expression of
the boundary conditions contains infinity, the limit of the expression is com-
puted as z approaches ∞. The delayed assignment (:=) is also used to avoid
the evaluation when the assignment is made—the same reason as defining the
differential equations.

For a multi-layer problem, the differential equations in the system are not
necessarily in the same interval (see example 4 in Section 5). Hence, we have to
give each equation its solution interval. To measure the accuracy of the approxi-
mate solutions, we have to compute the squared residual over the corresponding
solution interval. In practice, when the differential equation is defined in a semi-
infinite interval, we simply truncate the infinite interval to a finite interval to
compute the squared residual, or it will take a lot of computation time. For
this problem, the solution interval for each equation and the integral interval
for squared residual are defined as

zL[1] = 0;

zR[1] = infinity;

zL[2] = 0;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

Here zL[k] (or zR[k]) is the left (or right) end point of the solution inter-
val for the k-th equation f[k,z,{f,g},Lambda]. And zLintegral[k] (or
zRintegral[k]) is the left (or right) end point of the integral interval to com-
pute the squared residual for the k-th equation. If the value of zL[k] (or zR[k])
is a finite number, zLintegral[k] (or zRintegral[k]) is set to the same val-
ue automatically. However, if any of them contains the symbol infinity, we
have to set the corresponding end point of the integral interval to a finite value.
That’s why we write explicitly zRintegral[1]=10 and zRintegral[2]=10. For
this problem, the squared residual is integrated over the range [0, 10] for both
equations.

The auxiliary linear operators for this problem are chosen as L1 = ∂3

∂η3 − ∂
∂η ,

L2 = ∂2

∂η2 − 1, which are coded as

L[1,u_] := D[u,{z,3}]-D[u,z];

L[2,u_] := D[u,{z,2}]-u;

Here L[k,u] is the auxiliary linear operator corresponding to the k-th equation.
Note that i) η is the independent variable in the differential equations (1) and
(2), while z is the universal independent variable in the package BVPh 2.0; ii)
The delayed assignment SetDelayed(:=) is used to define the operator; iii) u
is a formal parameter.

For this problem, the initial guesses are f0 = 1− e−z and g0 = ze−z. They
are coded as

5

U[1,0] = 1-Exp[-z];

U[2,0] = alpha*z*Exp[-z];

Here alpha is an introduced convergence-control parameter that will be deter-
mined later. U[k,0] is the initial guess of the k-th equation. Note that U[k,0]
and u[k,0] are usually the same in the package BVPh 2.0.

We want to solve this problem when the physical parameters β = 1/5 and
λ = 1/10. These two parameters are coded as

beta = 1/5;

la = 1/10;

So far, we have defined all the input of this problem properly, except the
convergence-control parameter c0[k] and alpha. Usually, the optimal values
of the convergence-control parameters are obtained by minimizing the squared
residual error. For this problem, we get the approximate optimal values of
c0[1], c0[2] and alpha by minimizing the squared residual error of the 3rd-
order approximation as

GetOptiVar[3, {}, {c0[1],c0[2],alpha}];

The first parameter of GetOptiVar denotes which order approximation is used.
Here 3 means the 3rd-order approximation is used. The second parameter de-
notes a list of constraints used in the optimization. When the second parameter
of GetOptiVar is an empty list, it means the squared residual is minimized with-
out any constraint. Here we add no constraints to minimize the squared residual.
The third parameter is a list of the variables to be optimized. Here we want to
optimize c0[1], c0[2] and alpha. After some computation, it gives the opti-
mized convergence-control parameters c0[1]=-1.26906, c0[2]=-1.19418 and
alpha=-0.0657063.

Now we can use

BVPh[1,10]

to get the 10th-order approximation. If we are not satisfied with the accuracy of
the 10th-order approximation, we can use BVPh[11,20], instead of BVPh[1,20],
to get 20th-order approximation or higher order approximation.

The kth-order approximation of the ith differential equation is stored in
U[i,k]. We can use

Plot[{U[1,20], U[2,20]}, {z,0,10},

AxesLabel->{"\[Eta]", ""},

PlotStyle->{{Thin, Red},{Dashed, Blue}}]

to plot the 20th-order approximate solution, which is shown in Fig. 1.

6

The accuracy of the kth-order approximation is measured by the squared
residual. We can use

ListLogPlot[Table[{2*i,ErrTotal[2*i]},{i,1,10}],

Joined->True,Mesh->All,

PlotRange->{{2,20},{10^(-15),10^(-5)}},

AxesLabel->{"m", "error"}];

to plot the curve of the total error versus the order of approximation, which is
shown in Fig. 2. Note that ErrTotal[k] stores the total error of the system
when the kth-order approximation is used, while Err[k] is a list that stores the
error for each ODE in the system when the kth-order approximation is used.

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

Fig. 1: The curve of f(z) (solid) and g(z) (dashed) for the illustrative example
when β = 1/5, λ = 1/10.

5 10 15 20
m10-15

10-13

10-11

10-9

10-7

10-5
error

Fig. 2: Total error vs. order of approximation for the illustrative example when
β = 1/5, λ = 1/10.

7

4 A glance at the BVPh 2.0

In this section, we will take a glance at the Mathematica package BVPh 2.0.

4.1 Key modules

BVPh The module BVPh[k_,m_] gives the kth to mth-order homotopy approxi-
mations of a system of ordinary differential equations (ODEs) subject to
some boundary conditions. The system may have an unknown parameter
(when TypeEQ=2) to be determined or may not have an unknown param-
eter (when TypeEQ=1) to be determined . It is the basic module. For ex-
ample, BVPh[1,10] gives the 1st to 10th-order homotopy-approximations.
Thereafter, BVPh[11,15] further gives the 11th to 15th-order homotopy-
approximations. For problems with an unknown parameter, the initial
guess of the unknown parameter is determined by an algebraic equation.
Thus, if there are more than one initial guesses of the unknown parameter,
it is required to choose one among them by inputting an integer, such an
1 or 2, corresponding to the 1st or the 2nd initial guess of the unknown
parameter, respectively.

iter The module iter[k_,m_,r_] provides us homotopy approximations of
the kth to mth iteration by means of the rth-order iteration formula. It
calls the basic module BVPh. For example, iter[1,10,3] gives homotopy-
approximations of the 1st to 10th iteration by the 3rd-order iteration for-
mula. Furthermore, iter[11,20,3] gives the homotopy-approximations
of the 11th to 20th iterations. The iteration stops when the squared resid-
ual of the system is less than a critical value ErrReq, whose default is
10−20.

GetErr The module GetErr[k_] gives the squared residual of the governing e-
quation at the kth-order homotopy-approximation gained by the module
BVPh. Note that, errer[i,k] provides the residual of the ith governing
equation at the kth-order homotopy-approximation gained by BVPh, and
ErrTotal[k] gives the total averaged squared residual of the system at
the kth-order homotopy-aprroximation gained by BVPh.

hp The module hp[f_,m_,n_] gives the [m,n] homotopy-padé approximation
of a list of the homotopy-approximations f, where f[[i+1]] denotes the
ith-order homotopy-approximation of the same governing equation.

GetBC The module GetBC[i_,k_] gives the ith boundary condition of the kth-
order deformation equation.

4.2 Control parameters

TypeEQ A control parameter for the type of governing equations: TypeEQ=1 corre-
sponds to a nonlinear problem without an unknown parameter, TypeEQ=2

8

corresponds to a nonlinear problem with an unknown parameter (called
eigenvalue problem or eigenvalue-like problem), respectively.

TypeL A control parameter for the type of auxiliary linear operator: TypeL=1

corresponds to polynomial approximation, and TypeL=2 corresponds to a
trigonometric approximation or a hybrid-base approximation, respectively.

ApproxQ A control parameter for approximation of solutions. When ApproxQ=1, the
right-hand side term of all higher-order deformation equations are approx-
imated by Chebyshev polynomial, or by the hybrid-base approximation.
When ApproxQ=0, there is no such kind of approximation. When TypeL=2,
ApproxQ=1 is valid only for problems in a finite interval z ∈ [0, a], where
a > 0 is a constant.

HYBRID A control parameter for the hybrid-base functions. When HYBRID=1,
hybrid-base functions are employed in approximation. When HYBRID=0,
trigonometric functions without polynomials are employed in approxima-
tion. This parameter is usually used in conjunction with TypeBase, and
is valid only when TypeL=2 and ApproxQ=1 for problems in a finite interval
z ∈ [0, a].

TypeBase A control parameter for the type of Fourier series approximation: TypeBa-
se=1 corresponds to the odd Fourier approximation, TypeBase=2 corre-
sponds to the even Fourier approximation, respectively. This parameter is
usually used in conjunction with HYBRID, and is valid only when TypeL=2

and ApproxQ=1 for problems in a finite interval z ∈ [0, a].

Ntruncated A control parameter to determine the number of truncated terms used to
approximate the right-hand side of higher-order deformation equations.
The larger Ntruncated, the better the approximations, but the more CPU
time. It is valid only when ApproxQ=1. The default is 10.

NtermMax A positive integer used in the module truncated, which ignores all poly-
nomial terms whose order is higher than NtermMax. The default is 90.

ErrReq A critical value of squared residual of governing equations to stop the
computation. The default is 10−20.

NgetErr A positive integer used in the module BVPh. The squared residual of gov-
erning equations is calculated when the order of approximation is divisible
by NgetErr. The default is 2.

Nintegral Number of discrete points with equal space, which are used to numerically
calculate the integral of a function. It is used in the module int. The
default is 50.

ComplexQ A control parameter for complex variables. ComplexQ=1 corresponds to
the existence of complex variables in governing equations and/or boundary
conditions. ComplexQ=0 corresponds to the nonexistence of such kind of
complex variables. The default is 0.

9

FLOAT A control parameter for floating-point computation. When FLOAT=1, floa-
ting-point numbers are employed in computation. When FLOAT=0, rational
numbers are employed in computation. The default is 1.

4.3 Input

NumEQ The number of governing equations.

f[i ,z ,{u ,· · · },lambda] The ith governing equation with or without an unknown parameter, corre-
sponding to Fi[z, u, · · ·] or Fi[z, u, · · · , λ] in either a finite interval z ∈ [a, b]
or an infinite interval z ∈ [b,+∞), where a and b are bounded constants.
Note that the formal parameter lambda denotes the unknown parame-
ter λ to be determined, or the eigenvalue λ for eigenvalue problems, but
has no meaning at all for problems without an unknown parameter λ, or
non-eigenvalue problems.

NumBC The number of boundary conditions.

BC[k ,z ,{u ,· · · }] The kth boundary condition corresponding to Bk[z, u, · · ·], where 1 ≤ k ≤
NumBC. Note that the symbol infinity denotes∞ in boundary conditions.

U[i,0] The initial guess ui,0(z).

c0[i] The convergence-control parameter c0,i, corresponding to the ith govern-
ing equation.

H[i ,z] The auxiliary function corresponding to the ith governing equation. The
default is H[i_,z_]:=1.

L[i ,f] The auxiliary linear operator corresponding to the ith governing equation.

zL[i] The left end-point of the interval of the solution corresponding to the ith
governing equation. Note that intervals of the solutions are not necessarily
the same, especially for multi-layer flow problem.

zR[i] The right end-point of the interval of the solution corresponding to the
ith governing equation.

zLintegral[i] The left end-point of the integral interval to compute the averaged squared
residual of the ith governing equation. When the left end-point of the solu-
tion interval for the ith governing equation is a finite number, zLintegra-
l[i] is automatically set to zL[i]. Otherwise, the user has to specify the
value of zLintegral[i].

zRintegral[i] The right end-point of the integral interval to compute the averaged
squared residual of the ith governing equation. When the right end-point
of the solution interval for the ith governing equation is a finite number,
zRintegral[i] is automatically set to zR[i]. Otherwise, the user has to
specify the value of zRintegral[i].

10

4.4 Output

U[i,k] The kth-order homotopy-approximation of the solution to the ith govern-
ing equation given by the basic module BVPh.

V[i,k] The kth-iteration homotopy-approximation of the solution to the ith gov-
erning equation given by the iteration module iter.

Lambda[k] The kth-order homotopy-approximation of the eigenvalue λ or the un-
known parameter λ given by the basic module BVPh.

LAMBDA[k] The kth-iteratioin homotopy-approximation of the eigenvalue λ or the
unknown parameter λ given by the iteration module iter.

error[i,k] The residual of the ith governing equation given by the kth-order homo-
topy-approximation (obtained by the basic module BVPh).

Err[k] A list of the averaged squared residual of each governing equation given
by the kth-order homotopy-approximation (obtained by the basic module
BVPh).

ErrTotal[k] The total of the averaged squared residual for each governing equation
given by the kth-order homotopy-approximation (obtained by the basic
module BVPh).

ERR[k] A list of the averaged squared residual of each governing equation given
by the kth-iteration homotopy-approximation (obtained by the iteration
module iter).

ERRTotal[k] The total of the averaged squared residual for each governing equation
given by the kth-iteration homotopy-approximation (obtained by the it-
eration module iter).

4.5 Global variables

All control parameters and output variables mentioned above are global. Besides
these, the following variables and parameters are also global.

z The independent vaiable z.

u[i,k] The solution to the kth-order deformation equation of the ith governing
equation.

lambda[k] A constant variable, corresponding to λk.

delta[i,k] A function dependent upon z, corresponding to the right-hand side term
δi,k(z) in the high-order deformation equation.

L[i,w] The ith auxiliary linear operator Li applied to w.

Linv[i,f] The inverse operator of Li, corresponding to L−1
i , applied to f .

sNum A positive integer to determine which initial guess λ0 is chosen when there
are multiple solutions of λ0.

11

5 More examples

More examples are given in this section to show the use the package BVPh 2.0.

5.1 Example 1: a system of ODEs in finite interval

Consider a system of coupled ODEs9

(1 +K)f ′′′′ −ReMf ′′ + 2Reff ′′′ −Kg′′ = 0, (5)

(1 +
K

2
)g′′ −ReK[2g − f ′′] +Re[2fg′ − f ′g] = 0, (6)

(7)

subject to

f(0) = 0, f(1) = 0, f ′(1) = 1, f ′′(0) = 0, (8)

g(1) = 0, g(0) = 0, (9)

where K is the ratio of viscosities, Re is the Reynolds number and M is the
Hartman number. Hayat9 has solved this problem by the HAM.

Here we solve this problem by BVPh 2.0. Since there are two ODEs in
system (5)–(6) without an unknown to be determined, we have NumEQ = 2 and
TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=(1+K)*D[f,{z,4}]

-Rey*M*D[f,{z,2}]+2*Rey*f*D[f,{z,3}]-K*D[g,{z,2}];

f[2,z_,{f_,g_},Lambda_]:=(1+K/2)*D[g,{z,2}]

-Rey*K*(2*g-D[f,{z,2}])+Rey*(2*f*D[g,z]-D[f,z]*g);

The eight boundary conditions are defined as

NumBC = 6;

BC[1,z_,{f_,g_}]:=f/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->1;

BC[3,z_,{f_,g_}]:=(D[f, z]-1)/.z->1;

BC[4,z_,{f_,g_}]:=D[f,{z,2}]/.z->0;

BC[5,z_,{f_,g_}]:=g/.z->1;

BC[6,z_,{f_,g_}]:=g/.z->0;

Now let us input the solution intervals

zL[1]=0; zR[1]=1;

zL[2]=0; zR[2]=1;

12

Since all the solution intervals are in finite intervals, we do not have to specify
the integral interval to compute the squared residual.

The initial guesses are chosen as f0 = (z3− z)/2 and g0 = 0. They are input
as

U[1,0] = (z^3-z)/2;

U[2,0] = 0;

The auxiliary linear operators are chosen as L1 = ∂4

∂z4 and L2 = ∂2

∂z2 . They
are defined as

L[1,u_]:=D[u,{z,4}];

L[2,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators.

Without loss of generality, let us consider the case when Re = M = 2 and
K = 1/2. These physical parameters are input as

Rey = M = 2;

K = 1/2;

At this time, we have input all the data for this problem, except the conver-
gence-control parameters c0[k]. Hayat9 chose the convergence-control parame-
ters c0[1]=c0[2]=-0.7 through h̄-curve. Here we minimize the squared residual
error of the 4th-order approximations to get optimal values for c0[k]

GetOptiVar[4,{},{c0[1],c0[2]}];

The convergence-control parameters c0[1] and c0[2] are found to be about
−0.5825 and −0.721452 respectively.

Then we call the main module BVPh to get the 20th-order approximations

BVPh[1, 20];

The 20th-order approximations are stored in U[i,20],i=1,2, while the cor-
responding squared residual error is ErrTotal[20]. We can use

Plot[{U[1,20],U[2,20]},{z,0,1},AxesLabel->{"z",""},

PlotStyle->{{Thin, Red}, {Dashed, Blue}},

PlotRange->{{0, 1}, {-0.2, 0.2}}]

to plot the 20th-order approximations, which is shown in Fig. 3. This figure
agrees with Hayat’s9 Fig. 9 and Fig. 12 when M = 2, Re = 2 and K = 0.5.
The 20th-order approximations give the values of f ′′(1) = 3.61076396287 and
g′(1) = −0.738463496789, which are the same with Hayat’s result.9 The total

13

error of the system for every two order of approximations is plotted in Fig. 4 by
the command

ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 20}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 20}, {10^(-34), 1}},

AxesLabel -> {"m", "error"}]

We can see from it that the error decreases beautifully.

0.2 0.4 0.6 0.8 1.0
z

-0.2

-0.1

0.0

0.1

0.2

Fig. 3: The curve of f(z) (solid), g(z) (dashed) for Example 1.

5 10 15 20
m10-34

10-28

10-22

10-16

10-10

10-4

error

Fig. 4: Total error vs. order of approximation for Example 1.

5.2 Example 2: a system of coupled ODEs with algebraic
property at infinity

Consider a set of two coupled nonlinear differential equations5

f ′′′(η) + θ(η)− f ′2 = 0, (10)

θ′′(η) = 3σf ′(η)θ(η), (11)

14

subject to

f(0) = f ′(0) = 0, θ(0) = 1, f ′(+∞) = θ(+∞) = 0, (12)

where the prime denotes differentiation with respect to the similarity variable
η, σ is the Prandtl number, f(η) and θ(η) relate to the velocity profile and
temperature distribution of the boundary layer, respectively. Liao5 employed
the HAM to solve this system analytically. Now we use the BVPh 2.0 to solve
it.

Under the transformation

ξ = 1 + λη, F (ξ) = f ′(η), S(ξ) = θ(η), (13)

Eqs. (10) and (11) become

λ2F ′′(ξ) + S(ξ)− F 2(ξ) = 0, (14)

λ2S′′(ξ) = 3σF (ξ)S(ξ), (15)

subject to
F (1) = 0, S(1) = 1, F (+∞) = S(+∞) = 0. (16)

Since there are two ODEs in system (14)–(15) without an unknown to be
determined, we have NumEQ = 2 and TypeEQ=1. This new system is defined as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{F_,S_},Lambda_]:=la^2*D[F,{z,2}]+S-F^2;

f[2,z_,{F_,S_},Lambda_]:=la^2*D[S,{z, 2}]-3*sigma*F*S;

The four boundary conditions (16) are defined as

NumBC = 4;

BC[1,z_,{F_, S_}] := F /. z -> 1;

BC[2,z_,{F_, S_}] := (G - 1) /. z -> 1;

BC[3,z_,{F_, S_}] := F /. z -> infinity;

BC[4,z_,{F_, S_}] := G /. z -> infinity;

Now let us input the solution intervals and integral intervals for computing
squared residual error

zL[1] = 1;

zR[1] = infinity;

zL[2] = 1;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

15

The initial guesses are choosen as F0 = γ(ξ−2− ξ−3), S0 = ξ−4 and they are
input as

U[1, 0] = gamma*(z^(-2) - z^(-3));

U[2, 0] = z^(-4);

The auxiliary linear operators are LF = ξ
3

∂2

∂ξ2 + ∂
∂ξ and LS = ξ

5
∂2

∂ξ2 + ∂
∂ξ ,

which are defined as

L[1, u_] := D[u, {z, 2}]*z/3 + D[u, z];

L[2, u_] := D[u, {z, 2}]*z/5 + D[u, z];

Without loss of generality, let us consider the case when σ = 1, γ = 3 and
λ = 1/3. These physical parameters and the control parameters c0[k] are
defined as

sigma = 1;

gamma = 3;

la = 1/3;

c0[1] = -1/2;

c0[2] = -1/2;

Then we call the main module BVPh

BVPh[1, 20];

to get the 20th-order approximations. If we are not satisfied with the accuracy of
the 20th-order approximation, we can use BVPh[21,40], instead of BVPh[1,40],
to get 40th-order approximation or higher order approximation.

Note that U[1,40] and U[2,40] are the 40th-order approximations of the
transformed system (14), (15) and (16). To plot the curve of the 40th-order
approximations for the original problem, we first replace z with 1+λη to obtain
the 40th-order approximations for f ′(η) and g(η), then plot the curve we want.
This is done in Mathemcatica by the following command

trans = {z -> 1 + la*\[Eta]};

Plot[Evaluate[{U[1, 40], U[2, 40]} /. trans],

{\[Eta], 0, 10},PlotRange -> {{0, 10}, {0, 1}},

AxesLabel -> {"\[Eta]", ""},

PlotStyle -> {{Thin, Red}, {Dashed, Blue}}]

and the curve is shown in Fig. 5. Here trans={z->1+la*\[Eta]} is the corre-
sponding transformation, \[Eta] is the symbol η in Mathematica..

The total error ErrTotal[k] of the transformed system for every two order
approximations is plotted in Fig. 6 by the following command

16

ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 20}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 40}, {10^(-10), 0.01}},

AxesLabel -> {"m", "error"}]

Note that ErrTotal[k] not only measures the accuracy of the kth-order ap-
proximations for the transformed problem, but also measures the corresponding
approximations for the original problem.

0 2 4 6 8 10
Η0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: The curve of f ′(η) (solid) and θ(η) (dashed) for Example 2.

5 10 15 20 25 30 35 40
m10-10

10-8

10-6

10-4

0.01
error

Fig. 6: Total error vs. order of approximation for Example 2.

The 40th-order approximations of f ′′(0) and g′′(0) are 0.693268 and −0.769-
879, respectively. Kuiken’s numerical result is f ′′(0) ≈ 0.693212 and g′(0) ≈
−0.769861. To get more accurate result, we have two choices. One is to call the
module BVPh to get higher order approximation as before, the other is to apply
the Padé approximation to the current approximations. The latter is done by
calling the module hp as follows

17

hp[Table[D[(U[1,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

hp[Table[D[(U[2,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

which give 0.693212 and −0.769861, the [20, 20] homotopy-Padé approximations
of f ′′(0) and g′(0), respectively.

Note that we can compare the curve of 2nth-order approximation and the
[n, n] homotopy-Padé approximation in a simple and efficient way. Here we
compare U[1,40] and the [20, 20] homotopy-Padé approximations of U[1,i],
i = 0 · · · 40, in the Mathematica by the following command.

Plot[{U[1, 40]/.trans, hp[Table[U[1,i]/.trans,

{i, 0, 40}],20, 20]},{\[Eta],0,10},PlotRange->Full,

AxesLabel->{"\[Eta]", ""},

PlotStyle->{{Thin,Red},{Dashed,Blue}}

The comparison is shown in Fig. 7. From it we can see that the two are almost
the same. This validate the convergence of the approximations to some extent.
The above command is very efficent, because the Plot command in Mathematica
first substitute the sample points into the expression and then applies the hp to
a list of numerical values, rather than applies the hp to a list of expressions and
then substitute the sample points into the resulting expression.

2 4 6 8 10
Η

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fig. 7: The curve of 40th-order approximation of f ′(η) (solid) and [20, 20]
homotopy-Padé approximations of f ′(η) (dashed) for Example 2.

18

5.3 Example 3: a system of ODEs with an unknown pa-
rameter

Consider a system of ODEs10

U ′′ + (GrPr)θ −Nrϕ+ σ = 0, (17)

θ′′ +Nbθ
′ϕ′ +Nt(θ

′)2 +Nb +Nt − U = 0, (18)

ϕ′′ +
Nt

Nb
θ′′ − LeU = 0, (19)

subject to

U(−1) = U(1) = 0, θ(−1) = θ(1) = 0, ϕ(−1) = ϕ(1) = 0, (20)

with an additional condition ∫ 1

0

UdY = RePr, (21)

where Gr is the Grashof number, Pr the Prandtl number, Nr the buoyancy
ratio, σ the pressure parameter, Nb the Brownian motion parameter, Nt the
thermophoresis parameter, Le the Lewis number, and Re the Reynolds number.
All of the above parameters will be given for a special case except σ, which is
to be determined from the system. Xu10 solved this problem by the HAM.

Here we solve this problem by BVPh 2.0. Since there are three ODEs in
system (17)–(19) with an unknown σ to be determined, we have NumEQ = 3 and
TypeEQ=2. The system is input as

TypeEQ = 2;

NumEQ = 3;

f[1,z_,{f_,g_,s_},sigma_] :=

D[f,{z,2}]+Gr*Pr*g-Nr*s+sigma;

f[2,z_,{f_,g_,s_},sigma_] :=

D[g,{z,2}]+Nb*D[g,z]*D[s,z]+Nt*(D[g,z])^2-f;

f[3,z_,{f_,g_,s_},sigma_] :=

D[s,{z,2}]+Nt/Nb*D[f,{z,2}]-Le*f;

The seven boundary conditions, including the additional condition (21), are
defined as

NumBC = 7;

BC[1,z_,{f_,g_,s_}] :=f/.z->-1;

BC[2,z_,{f_,g_,s_}] :=f/.z->1;

BC[3,z_,{f_,g_,s_}] :=g/.z->-1;

BC[4,z_,{f_,g_,s_}] :=g/.z->1;

BC[5,z_,{f_,g_,s_}] :=s/.z->-1;

BC[6,z_,{f_,g_,s_}] :=s/.z->1;

BC[7,z_,{f_,g_,s_}] :=Integrate[f,{z,0,1}]-Ra*Pr;

19

Now let us input the solution intervals

zL[1] = -1; zR[1] = 1;

zL[2] = -1; zR[2] = 1;

zL[3] = -1; zR[3] = 1;

Since all the solution intervals are in finite intervals, we do not have to specify
the integral interval to compute the squared residual error.

The initial guesses are chosen as U0 = ϵ1−3(−25+ϵ1)z
2/2+5(−15+2ϵ1)z

4/2,
θ0 = ϵ2(1 − z2) and ϕ0 = ϵ3(1 − z2), where ϵ1, ϵ2 and ϵ3 are constants to be
optimized. They are input as

U[1,0]=eps1-3/2*(-25+4eps1)z^2+5/2*(-15+2eps1)*z^4;

U[2,0]=eps2*(1-z^2);

U[3,0]=eps3*(1-z^2);

The auxiliary linear operators are chosen as L1 = L2 = L3 = ∂2

∂Y 2 . They are
defined as

L[1, u_] := D[u, {z, 2}];

L[2, u_] := D[u, {z, 2}];

L[3, u_] := D[u, {z, 2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators.

Without loss of generality, let us consider the case when Nr = 3/20, Nt =
Nb = 1/20, Le = 10, Gr = 5, Pr = 1 and Re = 5. These physical parameters
are input as

Nr = 3/20; Nt = 1/20;

Nb = 1/20; Le = 10;

Gr = 5; Pr = 1;

Ra = 5;

At this time, we have input all the data for this problem, except the converge-
nce-control parameters c0[k], eps1, eps2 and eps3. We minimize the squared
residual error of the 3th-order approximations to get the optimal values by the
module GetOptiVar as follows

c0[1] = c0[2] = c0[3] = h;

GetOptiVar[3, {}, {eps1, eps2, eps3, h}];

Note that we put constraints c0[1]=c0[2]=c0[3] on c0[1], c0[2] and c0[3]

to simplify the computation. There is no constraint on eps1, eps2 and eps3.

20

After some computation, we get optimal values for all the convergence-
control parameters c0[1] = c0[2] = c0[3] ≈ −0.769452, eps1 ≈ 7.56408,
eps2 ≈ −2.58887 and eps3 ≈ −30.0044. Now we can use

BVPh[1,10]

to get the 10th-order approximation.
If we are not satisfied with the accuracy of the 10th-order approximation,

we can use BVPh[11,20] to get 20th-order approximation or higher order ap-
proximation. The 20th-order approximations of U , θ and ϕ are stored in
U[1,20], U[2,20] and U[3,20], the 20th-order approximation of σ is stored in
Lambda[19], while the corresponding squared residual error is ErrTotal[20].
Lambda[19] is about 18.272555944, which is the same with Xu’s result.10 The
20th-order approximations are plotted in Fig. 8. The total error of the system
for every two order of approximations are plotted in Fig. 9.

-1.0 -0.5 0.5 1.0
z

-25

-20

-15

-10

-5

5

Fig. 8: The curve of U (solid), θ (dashed) and ϕ(z) (dot dashed) for Example
3.

5 10 15 20
m10-20

10-16

10-12

10-8

10-4

1

error

Fig. 9: Total error vs. order of approximation for Example 3.

21

5.4 Example 4: a system of ODEs in different intervals

Consider a two-phase flow11

(i) Region 1

d2u1

dy2
+

Gr

Re
sin(ϕ)θ1 = P, (22)

d2θ1
dy2

+ PrEc

(
du1

dy

)2

= 0, (23)

(ii) Region 2

d2u2

dy2
+

Gr

Re

nbh2

λ
sin(ϕ)θ2 −

M2h2

λ
u2 =

h2

λ
P, (24)

d2θ2
dy2

+ EcPr
λ

λT

(
du2

dy

)2

+ EcPr
h2

λT
M2u2

2 = 0, (25)

subject to

u1(1) = 1, θ1(1) = 1, (26)

u1(0) = u2(0), θ1(0) = θ2(0), (27)

u′
1(0) =

λ

h
u′
2(0), θ

′
1(0) =

λT

h
θ′2(0), (28)

u2(−1) = 0, θ2(−1) = 0, (29)

where Gr is the Grashof number, Ec is the Eckert number, Pr is the Prandtl
number, Re is the Reynolds number, M is the Hartmann number and P is the
dimensionless pressure gradient. This model describes a two-fluid magnetohy-
drodynamic Poiseuille-Couette flow and heat transfer in an inclined channel.
Umavathi11 investigate this model analytically by regular perturbation method
and numerically by finite difference technique.

The BVPh 2.0 can solve this problem (22)–(29) directly without difficulty.
Since all the parameters in the system will be given, we have NumEQ = 4 and
TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 4;

f[1,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[u1, {z, 2}]+ Gr/Ra*Sin[phi]*s1 - P ;

f[2,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[s1, {z, 2}] + Pr*Ec*(D[s1, z])^2;

f[3,z_,{u1_,s1_,u2_,s2_},Lambda_]:=D[u2,{z, 2}]-h^2/lamb*P

+Gr/Ra*Sin[phi]*n*b*h^2/lamb*s2-M^2*h^2/lamb*u2;

f[4,z_,{u1_,s1_,u2_,s2_},lambda_]:=D[s2,{z,2}]

+Pr*Ec*lamb/lambT*D[u2,z]^2+Pr*Ec*h^2/lambT*M^2*u2^2;

22

The eight boundary conditions (26)–(29) are defined as

NumBC=8;

BC[1,z_,{u1_,s1_,u2_,s2_}]:=(u1-1)/.z->1;

BC[2,z_,{u1_,s1_,u2_,s2_}]:=(u1-u2)/.z->0;

BC[3,z_,{u1_,s1_,u2_,s2_}]:=u2/.z->-1;

BC[4,z_,{u1_,s1_,u2_,s2_}]:=(D[u1,z]-D[u2,z]*lamb/h)/.z->0;

BC[5,z_,{u1_,s1_,u2_,s2_}]:=(s1-1)/.z->1;

BC[6,z_,{u1_,s1_,u2_,s2_}]:=(s1-s2)/.z->0;

BC[7,z_,{u1_,s1_,u2_,s2_}]:=s2/.z->-1;

BC[8,z_,{u1_,s1_,u2_,s2_}]:=(D[s1,z]-D[s2,z]*lambT/h)/.z->0;

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1; (* u1 *)

zL[2] = 0; zR[2] = 1; (* s1 *)

zL[3] = -1; zR[3] = 0; (* u2 *)

zL[4] = -1; zR[4] = 0; (* s2 *)

Note that the solution intervals are not the same. Since all the solution intervals
are in finite intervals, we do not have to specify the integral interval to compute
the squared residual error.

The initial guesses are chosen as u1,0 = λ
h (z−z2)+1, θ1,0 = zλT

h +(1− λT

h)z2,
u2,0 = 1 + z and θ2,0 = z + z2. They are input as

U[1, 0] = (z - z^2)*lamb/h+1; (* u1 *)

U[2, 0] = z*lambT/h +(1-lambT/h)*z^2; (* s1 *)

U[3, 0] = 1 + z; (* u2 *)

U[4, 0] = z^2 + z; (* s2 *)

The auxiliary linear operators are chosen as L1 = L2 = L3 = L4 = ∂2

∂y2 .
They are defined as

L[1,u_]:=D[u,{z,2}];

L[2,u_]:=D[u,{z,2}];

L[3,u_]:=D[u,{z,2}];

L[4,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators and z is the independent variable in the package.

Without loss of generality, let us consider the case when Pr = 7/10, Ec =
1/100, P = −5, b = 1, n = 1, Re = 1, M = 2, Gr = 5, h = 1, λ = 1, λT = 1,
and ϕ = π/6. These physical parameters are input as

23

P = -5; b = 1;

n = 1; Ra = 1;

M = 2; Gr = 5;

lamb = 1; lambT = 1;

h = 1; phi = Pi/6;

Pr = 7/10; Ec = 1/100;

At this time, we have input all the data for this problem, except the converge-
nce-control parameters c0[k]. We minimize the squared residual error of the
4th-order approximations to obtain optimal values for c0[k] by the command

GetOptiVar[4,{},{c0[1],c0[2],c0[3],c0[4]}];

Note that the second parameter of GetOptiVar is a empty list, which means
that we give no constraints on the convergence-control parameters c0[k].

After some time , we obtain the optimal values for c0[k], which reads c0[1]
≈ −0.898166, c0[2] ≈ −0.946828, c0[3] ≈ −0.780946 and c0[4] ≈ −1.12363.
Then we call the main module BVPh to get the 30th-order approximations

BVPh[1, 30];

The 30th-order approximations for u1, θ1, u2, θ2 are stored in U[1,30], U[2,30],
U[3,30] and U[4,30], respectively, while the corresponding squared residual
error is ErrTotal[30]. The 30th-order approximations are plotted in Fig. 10.
The value of θ(y) agrees with Umavathi’s result11 (black dots), as shown in
Fig. 10. The 30th-order approximation of θ(y) gives the heat transfer rate
Nu+ = θ′1(1) = 0.8860625 and Nu− = θ′2(1) = 1.122312, which agrees with
Nu+ = 0.88606 and Nu− = 1.12230 in Umavathi’s11 Table 3.

The total error of the system for every two order of approximations is plotted
in Fig. 11.

-1.0 -0.5 0.0 0.5 1.0
z

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 10: The curve of u(y) (solid) and θ(y) (dashed) for Example 4. The black
dots are the values for θ(y) obtained by Umavathi.11

24

5 10 15 20 25 30
m10-21

10-17

10-13

10-9

10-5

0.1

error

Fig. 11: Total error vs. order of approximation for Example 4.

5.5 Example 5: iterative solutions of the Gelfand equation

If the problem is defined in a finite interval, the BVPh 1.0 can solve it using an
iterative method. The BVPh 2.0 has inherited this feature. However, there are
some minor differences in the input.

Consider the Gelfand equation12–14

u′′ + (K − 1)
u′

z
+ λeu = 0, u′(0) = u(1) = 0, (30)

where the prime denotes the differentiation with respect to z, K ≥ 1 is a con-
stant, u(z) and λ denote eigenfunction and eigenvalue, respectively. Following
Liao6 , an additional boundary condition

u(0) = A (31)

is added to distinguish different eigenfunctions.
To solve this problem by BVPh 2.0, we have to input the differential equa-

tions, boundary conditions and initial guesses. Since the problem is a single
ODE with an unknown λ to be determined, we set NumEQ = 1 and TypeEQ=2.
The differential equation can be coded as follows

TypeEQ = 2;

NumEQ = 1;

f[1,z_,{u_},lambda_] :=

D[u,{z,2}] +(K-1)*D[u,z]/z+lambda*Exp[u];

The three boundary conditions, including the additional condition (31), are
defined as

NumBC = 3;

BC[1, z_, {u_}] := (u-A)/. z -> 0;

BC[2, z_, {u_}] := D[u,z]/. z -> 0;

BC[3, z_, {u_}] := u /. z -> 1;

25

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1;

Since the solution interval is finite, we do not have to specify the integral interval
to compute the squared residual error.

The initial guess is chosen as U0 = A
2 [1 + cos(πz)], which is input as

U[1,0] = A/2*(1 + Cos[Pi*z]);

The auxiliary linear operator is chosen as L = ∂2

∂z2 +
(
π
a

)2
, which is defined

as

L[1,f_] := D[f,{z,2}]+Pi^2*f;

Note that we use the delayed assignment SetDelayed(:=) to define the linear
operator.

Without loss of generality, let us consider the case when A = 1 and K = 2.
The physical parameters are input as

K = 2; A = 1;

Because we want to approximate the right-hand sides using the hybrid-base
function and use an iterative approach to get the approximations, the control
parameters in BVPh 2.0 are modified to

TypeL = 2;

HYBRID = 1; (* hybrid-base functions *)

TypeBase = 2; (* even Fourier series *)

ApproxQ = 1;

Ntruncated = 30;

Here TypeL=2, HYBRID=1 and ApproxQ=1 together mean that the right-hand side
term of all high-order deformation equations is approximated by the hybrid-base
approximations. TypeBase=2 means the even Fourier series is used (TypeBase=1
also applies to this problem). Ntruncated=20 means Nt = 30.

At this time, we have input all the data for this problem, except the converge-
nce-control parameter c0[1]. To get optimal c0[1], we minimize the squared
residual error of the 6th-order approximations. This is done in BVPh 2.0 by
calling the function GetOptiVar

GetOptiVar[6, {}, {c0[1]}];

After some computation, we get the optimal value for the convergence-control
parameter c0[1]= −0.522418 . Now we can use the 3rd-order iteration HAM
approach

26

iter[1,6,3]

to get the desired approximation. Here 6 means the iteration times. After about
40 seconds, the 6th iteration gives the eigenvalue 1.90921, which is the same
with Liao’s result.6 The kth iteration approximations of u and λ are stored
in V[1,k], and LAMBDA[k], while the corresponding squared residual error is
stored in ERRTotal[k]. The 6th iteration approximation is plotted in Fig. 12
by

Plot[V[1,6],{z,0,1},AxesLabel->{"z", "u(z)"}]

The total error for each iteration is plotted in Fig. 13 by

ListLogPlot[Table[{i, ERRTotal[i]}, {i, 1, 6}],

PlotRange->{{1,6},{10^-10,0.01}},Joined->True, Mesh->All,

AxesLabel->{"m","error"}]

0.2 0.4 0.6 0.8 1.0
z

0.2

0.4

0.6

0.8

1.0

uHzL

Fig. 12: The curve of the eigenfunction u(z) corresponding to the eigenvalue
λ = 1.90921 when A = 1 and K = 2 for Example 5.

27

1 2 3 4 5 6
m10-10

10-8

10-6

10-4

0.01
error

Fig. 13: Total error for each iteration vs. iteration times m for Example 5.

6 Conclusions

The homotopy analysis method (HAM) has been successfully applied to solve
lots of nonlinear problems in science and engineering. Based on the HAM, the
Mathematica package BVPh 1.0 was issued by Liao in May, 2012. The aim of
BVPh is to provide an analytic tool for as many nonlinear BVPs as possible in
the frame work of HAM.

However, the BVPh 1.0 can only deal with problems of a single ODE. Its
newest version BVPh 2.0 can now deal with many systems of ODEs. This
tutorial takes five examples to demonstrate the use of BVPh 2.0, including a
system of coupled ODEs in finite interval, a system of coupled ODEs in semi-
infinite interval, a system of coupled ODEs with algebraic property at infinity, a
system of ODEs with an unknown parameter to be determined and a system of
ODEs in different intervals. Besides, new algorithms are used in some modules
of BVPh 2.0. Hence, BVPh 2.0 is much faster than BVPh 1.0 in most cases.
The BVPh is a free/open source software available at http://numericaltank.
sjtu.edu.cn/HAM.htm

It is well-known that the iterative method can gain accurate approximations
more efficiently by means of HAM. The BVPh 2.0 has also inherited the feature
of BVPh 1.0 to solve the problems in finite interval using the iterative method.
For problems in semi-infinite interval, an iterative method for two typical kinds
of based functions is proposed.15 This method will be fulfilled in the future
version of BVPh.

Appendix A. Codes for examples

Here are the input data for all the examples in this tutorial. Note that the
listings without an end-of-line semicolon is wrapped to fit the page width. How-
ever, if you break the long command intentionally in Mathematica, it will run
as multi-line commands and may not work as you expected.

28

http://numericaltank.sjtu.edu.cn/HAM.htm
http://numericaltank.sjtu.edu.cn/HAM.htm

A.1. Sample codes to run the illustrative example

(* Filename: runIllustrative.nb *)

(* 1. Clear all global variables *)

ClearAll["Global‘*"];

(* 2. Read in the package BVPh 2.0 *)

<< "E:\\Package\\BVPh2_0.m"

(* 3. Set the current working directory to *)

(* "the current directory" *)

SetDirectory[ToFileName[Extract["FileName" /.

NotebookInformation[EvaluationNotebook[]], {1},

FrontEnd‘FileName]]];

(* 4. Read in your input data in current directory *)

<< Illustrative.m

A.2. Input data for the illustrative example

(* Filename: Illustrative.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=

D[f,{z,3}]-D[f,z]^2+f*D[f,{z,2}]+2*la*g+

beta*(2*f*D[f, z]*D[f,{z,2}]-f^2*D[f,{z,3}]);

f[2,z_,{f_,g_},Lambda_]:=

D[g,{z,2}]-D[f,z]*g+f*D[g,z]-2*la*D[f,z]+

beta*(2*f*D[f, z]*D[g, z]-f^2*D[g,{z, 2}]);

(* Define Boundary conditions *)

NumBC = 5;

BC[1,z_,{f_,g_}]:=(D[f, z]-1)/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->0;

BC[3,z_,{f_,g_}]:=g/.z->0;

BC[4,z_,{f_,g_}]:=D[f,z]/.z->infinity;

BC[5,z_,{f_,g_}]:=g/.z->infinity;

(* solution interval and integral interval for error *)

zL[1] = 0;

29

zR[1] = infinity;

zL[2] = 0;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

(* Define initial guess *)

U[1,0] = 1-Exp[-z];

U[2,0] = ahpha*z*Exp[-z];

(* Define the auxiliary linear operator *)

L[1,u_] := D[u,{z,3}]-D[u,z];

L[2,u_] := D[u,{z,2}]-u;

(* Define physical parameters *)

beta = 1/5;

la = 1/10;

(* Print input data *)

PrintInput[{f[z],g[z]}];

(* Get optimal c0 *)

GetOptiVar[3, {}, {c0[1],c0[2],alpha}];

(* Gain 10th-order HAM approximation *)

BVPh[1, 10];

A.3. Input data for Example 1

(* Filename: Example1.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

ErrReq=10^-30;

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=(1+K)*D[f,{z,4}]

-Rey*M*D[f,{z,2}]+2*Rey*f*D[f,{z,3}]-K*D[g,{z,2}];

f[2,z_,{f_,g_},Lambda_]:=(1+K/2)*D[g,{z,2}]

-Rey*K*(2*g-D[f,{z,2}])+Rey*(2*f*D[g,z]-D[f,z]*g);

(* Define Boundary conditions *)

NumBC = 6;

BC[1,z_,{f_,g_}]:=f/.z->0;

30

BC[2,z_,{f_,g_}]:=f/.z->1;

BC[3,z_,{f_,g_}]:=(D[f, z]-1)/.z->1;

BC[4,z_,{f_,g_}]:=D[f,{z,2}]/.z->0;

BC[5,z_,{f_,g_}]:=g/.z->1;

BC[6,z_,{f_,g_}]:=g/.z->0;

(* solution interval and integral interval for error *)

zL[1]=0;

zR[1]=1;

zL[2]=0;

zR[2]=1;

(* Define initial guess *)

U[1,0] = (z^3-z)/2;

U[2,0] = 0;

(* Define the auxiliary linear operator *)

L[1,u_]:=D[u,{z,4}];

L[2,u_]:=D[u,{z,2}];

(* Define physical parameters *)

Rey = M = 2;

K = 1/2;

(* Print input data *)

PrintInput[{f[z],g[z]}];

(* Get optimal c0 *)

GetOptiVar[4,{},{c0[1],c0[2]}];

(* Gain 20th-order HAM approximation *)

BVPh[1, 20];

A.4. Input data for Example 2

(* Filename: Example2.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{F_,S_},Lambda_]:=la^2*D[F,{z,2}]+S-F^2;

f[2,z_,{F_,S_},Lambda_]:=la^2*D[S,{z, 2}]-3*sigma*F*S;

31

(* Define Boundary conditions *)

NumBC = 4;

BC[1,z_,{F_, S_}] := F /. z -> 1;

BC[2,z_,{F_, S_}] := (G - 1) /. z -> 1;

BC[3,z_,{F_, S_}] := F /. z -> infinity;

BC[4,z_,{F_, S_}] := G /. z -> infinity;

(* solution interval and integral interval for error *)

zL[1] = 1;

zR[1] = infinity;

zL[2] = 1;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

(* Define initial guess *)

U[1, 0] = gamma*(z^(-2) - z^(-3));

U[2, 0] = z^(-4);

(* Defines the auxiliary linear operator *)

L[1, u_] := D[u, {z, 2}]*z/3 + D[u, z];

L[2, u_] := D[u, {z, 2}]*z/5 + D[u, z];

(* Define physical and control parameters *)

sigma = 1;

gamma = 3;

la = 1/3;

c0[1] = -1/2;

c0[2] = -1/2;

(* Print input data *)

PrintInput[{f[z], g[z]}];

(* Gain 20th-order HAM approximation *)

BVPh[1, 20];

A.5. Input data for Example 3

(* Filename: Example3.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 2;

NumEQ = 3;

32

f[1,z_,{f_,g_,s_},sigma_] :=

D[f,{z,2}]+Gr*Pr*g-Nr*s+sigma;

f[2,z_,{f_,g_,s_},sigma_] :=

D[g,{z,2}]+Nb*D[g,z]*D[s,z]+Nt*(D[g,z])^2-f;

f[3,z_,{f_,g_,s_},sigma_] :=

D[s,{z,2}]+Nt/Nb*D[f,{z,2}]-Le*f;

(* Define boundary conditions *)

NumBC = 7;

BC[1,z_,{f_,g_,s_}] :=f/.z->-1;

BC[2,z_,{f_,g_,s_}] :=f/.z->1;

BC[3,z_,{f_,g_,s_}] :=g/.z->-1;

BC[4,z_,{f_,g_,s_}] :=g/.z->1;

BC[5,z_,{f_,g_,s_}] :=s/.z->-1;

BC[6,z_,{f_,g_,s_}] :=s/.z->1;

BC[7,z_,{f_,g_,s_}] :=Integrate[f,{z,0,1}]-Ra*Pr;

(* Define solution interval *)

zL[1] = -1;

zR[1] = 1;

zL[2] = -1;

zR[2] = 1;

zL[3] = -1;

zR[3] = 1;

(* Defines the auxiliary linear operator *)

L[1, u_] := D[u, {z, 2}];

L[2, u_] := D[u, {z, 2}];

L[3, u_] := D[u, {z, 2}];

(* Define physical parameters *)

Nr = 1/5;

Nt = 1/20;

Nb = 1/20;

Le = 10;

Gr = 5;

Pr = 1;

Ra = 5;

(* Define initial guess *)

U[1,0]=eps1-3/2*(-25+4eps1)z^2+5/2*(-15+2eps1)*z^4;

U[2,0]=eps2*(1 - z^2);

U[3,0]=eps3*(1 - z^2);

33

(* Print input data *)

PrintInput[{f[z], g[z], s[z]}];

(* Get optimal convergence-control parameters *)

c0[1] = c0[2] = c0[3] = h;

GetOptiVar[3, {}, {eps1, eps2, eps3, h}];

(* Gain 10th-order HAM approximation *)

BVPh[1, 20];

A.6. Input data for Example 4

(* Filename: Example4.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

(* Define the governing equation *)

TypeEQ = 1;

NumEQ = 4;

f[1,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[u1, {z, 2}]+ Gr/Ra*Sin[phi]*s1 - P ;

f[2,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[s1, {z, 2}] + Pr*Ec*(D[s1, z])^2;

f[3,z_,{u1_,s1_,u2_,s2_},Lambda_]:=D[u2,{z, 2}]

-h^2/lamb*P+Gr/Ra*Sin[phi]*n*b*h^2/lamb*s2

-M^2*h^2/lamb*u2;

f[4,z_,{u1_,s1_,u2_,s2_},lambda_]:=D[s2,{z,2}]

+Pr*Ec*lamb/lambT*D[u2,z]^2+Pr*Ec*h^2/lambT*M^2*u2^2;

(* Define Boundary conditions *)

NumBC=8;

BC[1,z_,{u1_,s1_,u2_,s2_}]:=(u1-1)/.z->1;

BC[2,z_,{u1_,s1_,u2_,s2_}]:=(u1-u2)/.z->0;

BC[3,z_,{u1_,s1_,u2_,s2_}]:=u2/.z->-1;

BC[4,z_,{u1_,s1_,u2_,s2_}]:=

(D[u1,z]-D[u2,z]/m/h)/.z->0;

BC[5,z_,{u1_,s1_,u2_,s2_}]:=(s1-1)/.z->1;

BC[6,z_,{u1_,s1_,u2_,s2_}]:=(s1-s2)/.z->0;

BC[7,z_,{u1_,s1_,u2_,s2_}]:=s2/.z->-1;

BC[8,z_,{u1_,s1_,u2_,s2_}]:=

(D[s1,z]-D[s2,z]/K/h)/.z->0;

(* Define solution interval *)

zL[1]=0; (* u1 *)

zR[1]=1;

34

zL[2]=0; (* s1 *)

zR[2]=1;

zL[3]=-1;(* u2 *)

zR[3]=0;

zL[4]=-1;(* s2 *)

zR[4]=0;

(* Define initial guess *)

U[1, 0] = (z - z^2)*lamb/h+1; (* u1 *)

U[2, 0] = z*lambT/h +(1-lambT/h)*z^2; (* s1 *)

U[3, 0] = 1 + z; (* u2 *)

U[4, 0] = z^2 + z; (* s2 *)

(* Define the auxiliary linear operator *)

L[1,u_]:=D[u,{z,2}];

L[2,u_]:=D[u,{z,2}];

L[3,u_]:=D[u,{z,2}];

L[4,u_]:=D[u,{z,2}];

(* Define physical parameters *)

P = -5; b = 1;

n = 1; Ra = 1;

M = 2; Gr = 5;

lamb = 1; lambT = 1;

h = 1; phi = Pi/6;

Pr = 7/10; Ec = 1/100;

(* Print input data *)

PrintInput[{u1[z], s1[z], u2[z], s2[z]}];

(* Get optimal c0 *)

GetOptiVar[4,{},{c0[1],c0[2],c0[3],c0[4]}]

(* Gain 10th-order HAM approximation *)

BVPh[1,30];

A.7. Input data for Example 5

(* Filename: Example5.m *)

Print["The input file ",$InputFileName," is loaded !"];

(* Modify control parameters in BVPh if necessary *)

TypeL = 2;

HYBRID = 1; (* hybrid-base functions *)

TypeBase = 2; (* even Fourier series *)

35

ApproxQ = 1;

Ntruncated = 20;

(* Define the governing equation *)

TypeEQ = 2;

NumEQ = 1;

f[1,z_,{u_},lambda_] :=

D[u,{z,2}] +(K-1)*D[u,z]/z+lambda*Exp[u];

(* Define Boundary conditions *)

NumBC = 3;

BC[1, z_, {u_}] := (u-A)/. z -> 0;

BC[2, z_, {u_}] := D[u,z]/. z -> 0;

BC[3, z_, {u_}] := u /. z -> 1;

(* Define solution interval *)

zL[1] = 0;

zR[1] = 1;

(* Define initial guess *)

U[1,0] = A/2*(1 + Cos[Pi*z]);

(* Define the auxiliary linear operator *)

L[1,f_] := D[f,{z,2}]+Pi^2*f;

(* Define physical parameters *)

K = 2;

A=1;

(* Print input data *)

PrintInput[{u[z]}];

(* Get optimal c0 *)

GetOptiVar[6,{},c0[1]];

(* Print input data *)

PrintInput[{u[z]}];

(* Use 3rd-order iteration approach *)

iter[1,6,3]

References

1. S. J. Liao, Proposed homotopy analysis techniques for the solution of non-
linear problem. Ph.D. thesis, Shanghai Jiao Tong University (1992).

36

2. S. J. Liao, A uniformly valid analytic solution of two-dimensional viscous
flow over a semi-infinite flat plate, J. Fluid Mech.. 385, 101–128 (1999).

3. S. J. Liao, On the analytic solution of magnetohydrodynamic flows of non-
newtonian fluids over a stretching sheet, J. Fluid Mech.. 488, 189–212
(2003).

4. S. J. Liao, Series solutions of unsteady boundary-layer flows over a stretching
flat plate, Stud. Appl. Math.. 117(3), 239–263 (2006).

5. S. J. Liao, Beyond Perturbation—Introductioin to the Homotopy Analysis
Method. Chapman & Hall/CRC Press, Boca Raton (2003).

6. S. J. Liao, Homotopy Analysis Method in Nonlinear differential equations.
Springer-Verlag Press, New York (2011).

7. S. J. Liao, Notes on the homotopy analysis method: Some definitions and
theorems, Commun. Nonlinear Sci. Numer. Simulat.. 14, 983–997 (2009).

8. M. Sajid, Z. Iqbal, T. Hayat and S. Obaidat, Series solution for rotating
flow of an upper convected Maxwell fluid over a strtching sheet, Commun.
Theor. Phys.. 56(4), 740–744 (2011).

9. T. Hayat, M. Nawa and A. A. Hendi, Heat transfer analysis on axisymmetric
MHD flow of a micropolar fluid between the radially stretching sheets, J.
Mech.. 27(4), 607–617 (2011).

10. H. Xu, T. Fan and I. Pop, Analysis of mixed convection flow of a nanofluid in
a vertical channel with the Buongiorno mathematical model, Int. Commun.
Heat Mass. 44, 15–22 (2013).

11. J. C. Umavathi, I. C. Liu and J. Prathap Kumar. Magnetohydrodynamic
Poiseuille-Couette flow and heat transfer in an inclined channel, J. Mech..
26(4), 525–532 (2010).

12. J. P. Boyd, An analytical and numerical study of the two-dimensional Bratu
equation, J. Sci. Comput.. 1(2), 183–206 (1986).

13. J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial
operators, J. Differ. Equations. 184, 283–298 (2002).

14. J. S. McGough, Numerical continuation and the Gelfand problem, Appl.
Math. Comput.. 89(1-3), 225–239 (1998).

15. Y. L. Zhao, Z. L. Lin and S. J. Liao, An iterative analytical approach
for nonlinear boundary value problems in a semi-infinite domain, Comput.
Phys. Commun.. Online.

37

