Basic Ideas and Brief History
of the Homotopy Analysis Method

1 Introduction

Nonlinear equations are much more difficult to solve than linear ones, especially by
means of analytic methods. In general, there are two standards for a satisfactory
analytic method of nonlinear equations:

(a) It can always provide analytic approximations efficiently.

(b) It can ensure that analytic approximations are accurate enough for all physical
parameters.

Using above two standards as criterion, let us compare different analytic techniques
for nonlinear problems.

Perturbation techniques [11, 15,30, 37,38, 43] are widely applied in science and
engineering. Perturbation techniques are based on small/large physical parameters
(called perturbation quantities) in governing equations or initial /boundary conditions.
In general, perturbation approximations are expressed in series of perturbation quan-
tities, and a nonlinear equation is replaced by an infinite number of linear (sometimes
even nonlinear) sub-problems, which are completely determined by the original gov-
erning equation and especially by the place where perturbation quantities appear.
Perturbation methods are simple, and easy to understand. Especially, based on small
physical parameters, perturbation approximations often have clear physical meanings.
Unfortunately, not every nonlinear problem has such kind of perturbation quantity.
Besides, even if there exists such a small physical parameter, the sub-problem might
have no solutions, or might be so complicated that only a few sub-problems can be
solved. Thus, it is not guaranteed that one can always gain perturbation approxima-
tions for any a given nonlinear problem. More importantly, it is well-known that most
perturbation approximations are valid only for small physical parameters. So, it is
not guaranteed that a perturbation result is valid in the whole region of all physical
parameters. Thus, perturbation techniques do not satisfy not only the standard (a)
but also the standard (b) mentioned above.

To overcome the restrictions of perturbation techniques, some traditional non-
perturbation methods are developed, such as Lyapunov’s artificial small parame-
ter method [31], the J-expansion method [9, 14], Adomian decomposition method
[4-7,10,41], and so on. In principle, all of these methods are based on a so-called ar-
tificial parameter, and approximation solutions are expanded into series of such kind
of artificial parameter. The artificial small parameter is often used in such a way
that one can always gain approximation solutions for any a given nonlinear equation.
Compared with perturbation techniques, this is indeed a great progress. However,



in theory, one can put the artificial small parameter in many different ways, but un-
fortunately there are no theories to guide us how to put it in a better place so as
to gain a better approximation. For example, Adomian decomposition method sim-
ply uses the linear operator d*/dz* in most cases, where k is the highest order of
derivative of governing equations, and therefore it is rather easy to gain solutions
of the corresponding sub-problems by means of integrating k times with respect to
x. However, such simple linear operator gives approximations in power-series, which
unfortunately has often a finite radius of convergence. Thus, Adomian decomposi-
tion method can not ensure the convergence of its approximation series. Generally
speaking, all traditional non-perturbation methods, such as Lyapunov’s artificial small
parameter method [31], the d-expansion method [9,14] and Adomian decomposition
method [4-7,10,41], can not guarantee the convergence of approximation series. So,
these traditional non-perturbation methods satisfy only the standard (a) but not the
standard (b) mentioned before.

2 The early HAM

In 1992 Liao [17] took the lead to apply the homotopy [13], a basic concept in topol-
ogy [42], to gain analytic approximations of nonlinear differential equations. The
early homotopy analysis method (HAM) was first described by Liao [17] in his PhD
dissertation in 1992. For a given nonlinear differential equation

Nu(z)] =0, z€Q,

where AV is a nonlinear operator and u(z) is a unknown function, Liao [17] constructed
a one-parameter family of equations in the embedding parameter g € [0, 1], called the
zeroth-order deformation equation

(1= q)L[d(z;q) —uo(x)] + g N[p(x;9)] =0, x€Q, qe€l0,1], (1)

where £ is an auxiliary linear operator and wug(x) is an initial guess. In theory, the
concept of homotopy in topology provides us much larger freedom to choose both of the
auxiliary linear operator £ and the initial guess than the traditional non-perturbation
methods mentioned above, as pointed out by Liao [19,20,23,29]. At ¢ = 0 and
q =1, we have ¢(z;0) = ug(x) and ¢(z;1) = u(x), respectively. So, as the embedding
parameter ¢ € [0, 1] increases from 0 to 1, the solution ¢(z;q) of the zeroth-order
deformation equations varies (or deforms) from the initial guess ug(x) to the exact
solution u(x) of the original nonlinear differential equation N[u(x)] = 0. Such kind of
continuous variation is called deformation in topology, and this is the reason why we
call (1) the zeroth-order deformation equation. Since ¢(x;q) is also dependent upon
the embedding parameter ¢ € [0, 1], we can expand it into the Maclaurin series with
respect to g:

Oz q) = uo(x) + Y _ un(x) ", (2)



called the homotopy-Maclaurin series. Note that we have extremely large freedom to
choose the auxiliary linear operator £ and the initial guess ug(z). Assuming that,
the auxiliary linear operator £ and the initial guess ug(z) are so properly chosen
that the above homotopy-Maclaurin series converges at ¢ = 1, we have the so-called
homotopy-series solution

u(x) = uo(z) + Y un(x), (3)

n=1

which satisfies the original equation N [u(z)] = 0, as proved by Liao [19,20] in general.
Here, u,(x) is governed by the so-called high-order deformation equation

L [un (@) = Xn un-1(2)] = =0n1(2), (4)

where Y equals to 1 when k& > 2 but zero otherwise, and

Su(w) = {lw}

k! gk (5)

q=0

The high-order deformation equation (4) is always linear with the known term on the
right-hand side, therefore is easy to solve, as long as we choose the auxiliary linear
operator L properly.

3 The normal HAM

Unfortunately, Liao [18,20] found that the early HAM mentioned above can not always
guarantee the convergence of approximation series of nonlinear equations in general.
To overcome this restriction, Liao [18] in 1997 introduced such a non-zero auxiliary
parameter ¢y to construct a two-parameter family of equations®, i.e. the zeroth-order
deformation equation

(1= q)Ld(x;9) — uo(z)] = co g Nd(z59)], 2 €Q, ¢€0,1]. (6)

The corresponding high-order deformation equation reads

L [un(x) — Xn un—l(x)] = Co 5n—1(a7)a (7)

where d;(z) is defined by (5). In this way, the homotopy-series solution (3) is not
only dependent upon the physical variable x but also the auxiliary parameter cy.
Mathematically, it was found [18-20] that the auxiliary parameter ¢y can adjust and
control the convergence region and rate of homotopy-series solutions, although ¢
has no physical meanings at all. For detailed mathematical proofs, please refer to
Chapter 5 of [29]. In essence, the use of the auxiliary parameter ¢y introduces us

*Liao [18] originally used the symbol % to denote the non-zero auxiliary parameter. But, 7 is
well-known as Planck’s constant in quantum mechanics. To avoid misunderstanding, & is replaced
by the symbol ¢ in the book [29], which denotes the “basic” convergence-control parameter.



one more “artificial” degree of freedom, which greatly improves the early HAM: it
is the auxiliary parameter ¢y which provides us a convenient way to guarantee the
convergence of homotopy-series solution. For example, Liang & Jeffrey [16] illustrated
that, when analytic approximations given by the other analytic method is divergent
in the whole domain, one can gain convergent series solution simply by choosing a
proper auxiliary parameter cg. This is the reason why we call ¢y the convergence-
control parameter.

The use of the convergence-control parameter ¢ is indeed a great progress in the
frame of the HAM. It seems that more “artificial” degrees of freedom imply larger
possibility to gain better approximations by means of the homotopy analysis method.
Thus, Liao [19] in 1999 further introduced more “artificial” degrees of freedom by
using the zeroth-order deformation equation in a more general form:

[1 = a(q)]L[p(x;q) — uo(2)] = co Bq) N[d(z;9)], €, ¢€[0,1], (8)

where a(q) and 3(q) are the so-called deformation functions' satisfying
a(0) = p(0) =0,a(l) = p(1) = 1, (9)
whose Taylor series

400 +oo
a(q) =D amq™, B@)=D Bmd"™ (10)
m=1 m=1

are convergent for |¢| < 1. The corresponding high-order deformation equation reads

c um(x)—z_ak Uk (z) | =0 > Bk Omi(), (11)

where 0y () is defined by (5).

In fact, the zeroth-order deformation equation (8) can be further generalized, as
shown by Liao [20,21,24]. Obviously, there are an infinite number of the deformation
functions as defined above. Thus, the approximation series given by the HAM can
contain so many “artificial” degrees of freedom that they provide us great possibility
to guarantee the convergence of homotopy-series solution. Note that u,(x) is always
governed by the same auxiliary linear operator £, and we have great freedom to choose
L in such a way that u,(x) is easy to obtain. More importantly, for given auxiliary
linear operator £ and initial guess, we can always gain convergent homotopy-series
solution by choosing proper convergence-control parameter c¢q and proper deformation
functions «a(q) and £(q). Inversely, the guarantee of the convergence of homotopy-
series solutions also provides us freedom to choose the auxiliary linear operator £ and
initial guess. It is due to such kind of guarantee in the frame of the HAM that a

fa(q) and B(g) were called “approaching function” in some early articles about the homotopy-
analysis method. In the book [29], they are defined as “deformation function”, which better reveals
its relationship with the zeroth-order deformation equations



nonlinear ODE with variable coefficients can be transferred into a sequence of linear
ODEs with constant coefficients [26], that a nonlinear PDE can be transferred into
an infinite number of linear ODEs [22,25], that several coupled nonlinear ODEs can
be transferred into an infinite number of linear decoupled ODEs [45], and that even
a 2nd-order nonlinear PDE can be replaced by an infinite number of 4th-order linear
PDEs [23]. In fact, it is such kind of guarantee for convergence of series solutions,
together with the extremely large freedom in choice of the auxiliary linear operators,
that greatly simplifies finding convergent series of nonlinear equations in the frame
of the HAM, as illustrated in above-mentioned articles [22,23,25,26,45]. On the
other hand, without such kind of guarantee of convergence, we have in practice no
true freedom to choose the auxiliary linear operator £, because the freedom to get
a divergent series solution has no meanings at alll For example, Liang & Jeffrey
[16] pointed out that the series solution given by means of the so-called “homotopy
perturbation method™ [12] is divergent at all points except the initial guess, and thus
has completely no scientific meanings. So, unlike perturbation techniques and the
traditional non-perturbation methods mentioned above, the HAM satisfies both the
standard (a) and (b).

How to find a proper convergence-control parameter ¢y so as to gain a convergent
series solution? A straight-forward way to check the convergence of a homotopy-series
solution is to substitute it into original governing equations and boundary/initial
conditions and then to check the corresponding squared residual integrated in the
whole region. However, when the approximations contain unknown convergence-
control parameters and/or other unknown physical parameters, it is time-consuming
to calculate the squared residual at high-order of approximations. To avoid the time-
consuming computation, Liao [18-20] suggested to investigate the convergence of some
special quantities which often have important physical meanings. For example, one
can consider the convergence of u/(0) and u”(0) of a nonlinear differential equation
Nu(x)] = 0. It is found by Liao [18-20] that there often exists such an effective-region
R. that any ¢y € R, gives a convergent series solution of such kind of quantities. Be-
sides, such kind of effective-region can be found, although approximately, by plotting
the curves of these unknown quantities versus ¢y. For example, for a nonlinear differ-
ential equation N'[u(z)] = 0, one may approximately determine R, by plotting curves
u'(0) ~ ¢, u”(0) ~ ¢y and so on. These curves are called “co-curves” or “curves for
convergence-control parameter”*, which have been successfully applied to solve many
nonlinear problems [20].

4 The optimal HAM

However, such kind of ¢y-curves can not tell us the best convergence-control parameter
o, which corresponds to the fastest convergent series. In 2007, Yabushita, Yamashita
and Tsuboi [44] applied the HAM to solve two coupled nonlinear ODEs. They sug-
gested the so-called “optimization method” to find out the two optimal convergence-

iThe cg-curve was originally called the h-curve, and R, was originally denoted by Rp,.



control parameters by means of the minimum of the squared residual of governing

equations. Let )
n=1

Q

denote the squared residual of the mth-order approximation of the governing equation

N(u) = 0, integrated in the whole domain €. In theory, if the squared residual E,,
+o0o

tends to zero, then > u, () is a series solution of the original equation N (u) = 0. So,
n=0

if there exists only one convergence-control parameter ¢y, the so-called effective-region

R. of the convergence-control parameter ¢y is defined by

R. = {co } lim FE,,(c) = 0} )
m—+00

Besides, at the given order of approximation, the minimum of the squared residual F,,
corresponds to the optimal approximation. So, the curves of the squared residual FE,,
versus ¢ indicate not only the effective-region R, of the convergence-control parameter
o, but also the optimal value of ¢y that corresponds to the minimum of F,,. Note that
one can gain the squared residual of an equation at any order of approximations, even
if the exact solutions are unknown. Therefore, it is a very good idea of Yabushita,
Yamashita and Tsuboi [44] to use the squared residual to find out the effective-region
R. and the optimal convergence-control parameters.

In 2008, Akyildiz and Vajravelu [8] gained optimal convergence-control parame-
ter by the minimum of squared residual of governing equation, and found that the
corresponding homotopy-series solution converges very quickly.

In 2008, Marinca and Herigsanu [32] combined ¢y and $(g) in the zeroth-order
deformation equation (8) as one function ((q) with (0) = 0 but §(1) # 1, and
considered such a family of equations

(1= @)L [p(z;9) — uo()] = Blg) No(w; )], ¢ € [0,1], (12)
where the Taylor series

“+oo
B(Q) = Z en q"
n=1

converges at ¢ = 1. The above equation is a special case of (8), if we choose

I . Bl —
alg) = g, B(q)zaz(znq = o= cn#0. (13)

So, the so-called “optimal homotopy asymptotic method” [32,33] is still in the frame
of the HAM. Even so, Marinca and Heriganu’s approach [32] is interesting, which has
the advantage that /3 (1) = 1 is unnecessary so that we have larger freedom to choose
the auxiliary parameters c,: all of them become the so-called convergence-control



parameters. Marinca and Herigsanu [32] developed the so-called “optimal homotopy
asymptotic method” by minimizing the squared residual E,,: at the mth-order of
approximation, a set of nonlinear algebraic equations about ¢y, ¢, - - - , ¢, are solved
so as to find their optimal values. In theory, the more the convergence-control pa-
rameters are used, the better approximation we should obtain by this optimal HAM.
However, with too many unknown parameters, it is time-consuming to find out the op-
timal convergence-control parameters, especially at high-order of approximations for a
complicated nonlinear problem. For example, Niu and Wang [39] illustrated that the
optimal approach given by Marinca et al. [32,33] is time-consuming [34,40], although
their optimal HAM [32] is more rigorous in theory than Nou and Wang’s ones. It
seems that one had to balance the rigorousness in theory against the computational
efficiency in practice.

To increase the computational efficiency, Liao [28] developed in 2010 an optimal
HAM with only three convergence-control parameters. Like Marinca and Heriganu’s
approach [32,33], this optimal HAM is also based on the zeroth-order deformation
equation (8). However, two types of special deformation-functions are used, which
are determined completely by only one characteristic parameter |c;| < 1 and |ca| < 1,
respectively. In this way, there exist at most only three unknown convergence-control
parameters cg,c; and ¢y at any order of approximations. In addition, the discrete
squared residual is first introduced by Liao [28] to efficiently find out the optimal
convergence-control parameters.

In 2012, Liao [29] suggested a generalized optimal HAM by choosing a(q) = ¢
and such a special deformation-function

K

B@) =~ Y end”

C
0 n=1

in (8), where k > 1 is a positive integer and

K

00:ch7é0.

n=1

The corresponding zeroth-order deformation equation (8) reads

(1 = q)Llp(z;q) — uo(x)] = (Z Cn Q"> N 1o(z;9)],

and the corresponding mth-order deformation equation becomes

min{m,x}

ﬁ[um(z) - Xm um—l(x)] = Z Cn 5m—n(x)a

n=1
where i () is defined by (5). Note that the mth-order homotopy-approximation

m

u(@) ~ug(x) + Y up(z)

n=1



contains at most the x unknown convergence-control parameters
C1,C2,C3,*+ , Cg.

Therefore, in theory, there exist a finite number of unknown convergence-control
parameters
C1,C2,C3," " ,Cg

even as m — +o00o. In this case, the optimal mth-order homotopy-approximation is
given by a set of min {m, x} nonlinear algebraic equations

oL,
e 0, 1 <n<min{m,k}. (14)
Cn

The above optimal HAM becomes exactly the so-called “optimal homotopy asymp-
totic method” suggested by Marinca and Heriganu [32], if K — oco. Besides, when
c1 = ¢g and ¢, = 0 for n > 1, it becomes the basic optimal HAM. Therefore, this
optimal HAM is more general. For details, please refer to the book [29].

5 Mathematica package BVPh

Inspirited by the general validity of the HAM in so many different fields and by
the ability of “computing with functions instead of numbers” provided by computer
algebra system such as Mathematica and Maple, a HAM-based Mathematica pack-
age BVPh (version 1.0) is developed for highly nonlinear boundary-value/eigenvalue
equations. The BVPh 1.0 is mainly valid for nonlinear ordinary differential equation
with singularity, multiple solutions and/or multi-point boundary conditions in a finite
or an infinite interval. It is even valid for some nonlinear partial differential equations
related to boundary-layer flows. The aim is to develop a kind of analytic tool for
as many nonlinear boundary-value problems (BVPs) as possible such that multiple
solutions of some highly nonlinear BVPs can be conveniently found out, and that the
infinite interval and singularity of governing equations and/or multi-point boundary
conditions can be easily resolved.

Twelve examples for the use of the BVPh 1.0 are given in Part II of the book [29].
As an open resource, the BVPh 1.0 with a simple user’s guide is free available at

http://numericaltank.sjtu.edu.cn/BVPh.htm.

The higher version of the BVPh will be issued in future.



6 Some other approaches based on the HAM

6.1 The specctral HAM

In 2010, Motsa et al. [35, 36] suggested the so-called “spectral homotopy analysis
method” (SHAM) by using the Chebyshev pseudo-spectral method to solve the linear
high-order deformation equations. Since the SHAM combines the HAM with the nu-
merical techniques, it provides us larger freedom to choose auxiliary linear operators.
Thus, one can choose more complicated auxiliary linear operators in the frame of the

SHAM.

In theory, any a continuous function in a bounded interval can be best approx-
imated by Chebyshev polynomial. So, the SHAM provides larger freedom to choose
the auxiliary linear operator £ and initial guess. The basic idea of the SHAM might
be expanded to solve nonlinear partial differential equations. Besides, it is easy to
employ the optimal convergence-control parameter in the frame of the SHAM. Thus,
the SHAM has great potential to solve more complicated nonlinear problems in sci-
ence and engineering, although further modifications in theory and more applications
are needed.

Chebyshev polynomial is a kind of special function. There are many other special
functions such as Hermite polynomial, Legendre polynomial, Airy function, Bessel
function, Riemann zeta function, hypergeometric functions and so on. Since the
HAM provides us extremely large freedom to choose the auxiliary linear operator £
and the initial guess, it should be possible to develop a “generalized spectral HAM”
which can use a proper special function for a given nonlinear problem.

6.2 The predictor HAM

Abbasbandy et al. [1-3] proposed the so-called “the predictor homotopy analysis
method” (PHAM) to predict the multiplicity of solutions of nonlinear equations. Us-
ing the PHAM, they obtained multiple solutions of some nonlinear differential equa-
tions by means of different values of the convergence-control parameter ¢y with the
same auxiliary linear operator £ and even the same initial guess. As pointed out by
Abbasbandy et al. [2], this trait makes HAM to be different from the other analytical
techniques which are used to approach one solution but possibly lose the others.

For details, please refer to Abbasbandy et al. [1-3].
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