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Basic Ideas and Brief History
of the Homotopy Analysis Method

1 Introduction

Nonlinear equations are much more difficult to solve than linear ones, especially by
means of analytic methods. In general, there are two standards for a satisfactory
analytic method of nonlinear equations:

(a) It can always provide analytic approximations efficiently.

(b) It can ensure that analytic approximations are accurate enough for all physical
parameters.

Using above two standards as criterion, let us compare different analytic techniques
for nonlinear problems.

Perturbation techniques [11, 15, 30, 37, 38, 43] are widely applied in science and
engineering. Perturbation techniques are based on small/large physical parameters
(called perturbation quantities) in governing equations or initial/boundary conditions.
In general, perturbation approximations are expressed in series of perturbation quan-
tities, and a nonlinear equation is replaced by an infinite number of linear (sometimes
even nonlinear) sub-problems, which are completely determined by the original gov-
erning equation and especially by the place where perturbation quantities appear.
Perturbation methods are simple, and easy to understand. Especially, based on small
physical parameters, perturbation approximations often have clear physical meanings.
Unfortunately, not every nonlinear problem has such kind of perturbation quantity.
Besides, even if there exists such a small physical parameter, the sub-problem might
have no solutions, or might be so complicated that only a few sub-problems can be
solved. Thus, it is not guaranteed that one can always gain perturbation approxima-
tions for any a given nonlinear problem. More importantly, it is well-known that most
perturbation approximations are valid only for small physical parameters. So, it is
not guaranteed that a perturbation result is valid in the whole region of all physical
parameters. Thus, perturbation techniques do not satisfy not only the standard (a)
but also the standard (b) mentioned above.

To overcome the restrictions of perturbation techniques, some traditional non-
perturbation methods are developed, such as Lyapunov’s artificial small parame-
ter method [31], the δ-expansion method [9, 14], Adomian decomposition method
[4–7,10,41], and so on. In principle, all of these methods are based on a so-called ar-
tificial parameter, and approximation solutions are expanded into series of such kind
of artificial parameter. The artificial small parameter is often used in such a way
that one can always gain approximation solutions for any a given nonlinear equation.
Compared with perturbation techniques, this is indeed a great progress. However,
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in theory, one can put the artificial small parameter in many different ways, but un-
fortunately there are no theories to guide us how to put it in a better place so as
to gain a better approximation. For example, Adomian decomposition method sim-
ply uses the linear operator dk/dxk in most cases, where k is the highest order of
derivative of governing equations, and therefore it is rather easy to gain solutions
of the corresponding sub-problems by means of integrating k times with respect to
x. However, such simple linear operator gives approximations in power-series, which
unfortunately has often a finite radius of convergence. Thus, Adomian decomposi-
tion method can not ensure the convergence of its approximation series. Generally
speaking, all traditional non-perturbation methods, such as Lyapunov’s artificial small
parameter method [31], the δ-expansion method [9, 14] and Adomian decomposition
method [4–7, 10, 41], can not guarantee the convergence of approximation series. So,
these traditional non-perturbation methods satisfy only the standard (a) but not the
standard (b) mentioned before.


