
5

3 The normal HAM

Unfortunately, Liao [18,20] found that the early HAMmentioned above can not always
guarantee the convergence of approximation series of nonlinear equations in general.
To overcome this restriction, Liao [18] in 1997 introduced such a non-zero auxiliary
parameter c0 to construct a two-parameter family of equations∗, i.e. the zeroth-order
deformation equation

(1− q)L [φ(x; q)− u0(x)] = c0 q N [φ(x; q)], x ∈ Ω, q ∈ [0, 1]. (6)

The corresponding high-order deformation equation reads

L [un(x)− χn un−1(x)] = c0 δn−1(x), (7)

where δk(x) is defined by (5). In this way, the homotopy-series solution (3) is not
only dependent upon the physical variable x but also the auxiliary parameter c0.
Mathematically, it was found [18–20] that the auxiliary parameter c0 can adjust and
control the convergence region and rate of homotopy-series solutions, although c0
has no physical meanings at all. For detailed mathematical proofs, please refer to
Chapter 5 of [29]. In essence, the use of the auxiliary parameter c0 introduces us
one more “artificial” degree of freedom, which greatly improves the early HAM: it
is the auxiliary parameter c0 which provides us a convenient way to guarantee the
convergence of homotopy-series solution. For example, Liang & Jeffrey [16] illustrated
that, when analytic approximations given by the other analytic method is divergent
in the whole domain, one can gain convergent series solution simply by choosing a
proper auxiliary parameter c0. This is the reason why we call c0 the convergence-

control parameter.

The use of the convergence-control parameter c0 is indeed a great progress in the
frame of the HAM. It seems that more “artificial” degrees of freedom imply larger
possibility to gain better approximations by means of the homotopy analysis method.
Thus, Liao [19] in 1999 further introduced more “artificial” degrees of freedom by
using the zeroth-order deformation equation in a more general form:

[1− α(q)]L [φ(x; q)− u0(x)] = c0 β(q) N [φ(x; q)], x ∈ Ω, q ∈ [0, 1], (8)

where α(q) and β(q) are the so-called deformation functions† satisfying

α(0) = β(0) = 0, α(1) = β(1) = 1, (9)

whose Taylor series

α(q) =
+∞
∑

m=1

αm qm, β(q) =
+∞
∑

m=1

βm qm, (10)

∗Liao [18] originally used the symbol ~ to denote the non-zero auxiliary parameter. But, ~ is
well-known as Planck’s constant in quantum mechanics. To avoid misunderstanding, ~ is replaced
by the symbol c0 in the book [29], which denotes the “basic” convergence-control parameter.

†α(q) and β(q) were called “approaching function” in some early articles about the homotopy-
analysis method. In the book [29], they are defined as “deformation function”, which better reveals
its relationship with the zeroth-order deformation equations
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are convergent for |q| ≤ 1. The corresponding high-order deformation equation reads

L

[

um(x)−
m−1
∑

k=1

αk um−k(x)

]

= c0

m
∑

k=1

βk δm−k(x), (11)

where δk(x) is defined by (5).

In fact, the zeroth-order deformation equation (8) can be further generalized, as
shown by Liao [20,21,24]. Obviously, there are an infinite number of the deformation
functions as defined above. Thus, the approximation series given by the HAM can
contain so many “artificial” degrees of freedom that they provide us great possibility
to guarantee the convergence of homotopy-series solution. Note that un(x) is always
governed by the same auxiliary linear operator L, and we have great freedom to choose
L in such a way that un(x) is easy to obtain. More importantly, for given auxiliary
linear operator L and initial guess, we can always gain convergent homotopy-series
solution by choosing proper convergence-control parameter c0 and proper deformation
functions α(q) and β(q). Inversely, the guarantee of the convergence of homotopy-
series solutions also provides us freedom to choose the auxiliary linear operator L and
initial guess. It is due to such kind of guarantee in the frame of the HAM that a
nonlinear ODE with variable coefficients can be transferred into a sequence of linear
ODEs with constant coefficients [26], that a nonlinear PDE can be transferred into
an infinite number of linear ODEs [22, 25], that several coupled nonlinear ODEs can
be transferred into an infinite number of linear decoupled ODEs [45], and that even
a 2nd-order nonlinear PDE can be replaced by an infinite number of 4th-order linear
PDEs [23]. In fact, it is such kind of guarantee for convergence of series solutions,
together with the extremely large freedom in choice of the auxiliary linear operators,
that greatly simplifies finding convergent series of nonlinear equations in the frame
of the HAM, as illustrated in above-mentioned articles [22, 23, 25, 26, 45]. On the
other hand, without such kind of guarantee of convergence, we have in practice no
true freedom to choose the auxiliary linear operator L, because the freedom to get
a divergent series solution has no meanings at all! For example, Liang & Jeffrey
[16] pointed out that the series solution given by means of the so-called “homotopy
perturbation method¨ [12] is divergent at all points except the initial guess, and thus
has completely no scientific meanings. So, unlike perturbation techniques and the
traditional non-perturbation methods mentioned above, the HAM satisfies both the
standard (a) and (b).

How to find a proper convergence-control parameter c0 so as to gain a convergent
series solution? A straight-forward way to check the convergence of a homotopy-series
solution is to substitute it into original governing equations and boundary/initial
conditions and then to check the corresponding squared residual integrated in the
whole region. However, when the approximations contain unknown convergence-
control parameters and/or other unknown physical parameters, it is time-consuming
to calculate the squared residual at high-order of approximations. To avoid the time-
consuming computation, Liao [18–20] suggested to investigate the convergence of some
special quantities which often have important physical meanings. For example, one
can consider the convergence of u′(0) and u′′(0) of a nonlinear differential equation
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N [u(x)] = 0. It is found by Liao [18–20] that there often exists such an effective-region
Rc that any c0 ∈ Rc gives a convergent series solution of such kind of quantities. Be-
sides, such kind of effective-region can be found, although approximately, by plotting
the curves of these unknown quantities versus c0. For example, for a nonlinear differ-
ential equation N [u(x)] = 0, one may approximately determine Rc by plotting curves
u′(0) ∼ c0, u

′′(0) ∼ c0 and so on. These curves are called “c0-curves” or “curves for
convergence-control parameter”‡, which have been successfully applied to solve many
nonlinear problems [20].

‡The c0-curve was originally called the ~-curve, and Rc was originally denoted by R~.




