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The steady-state fully resonant wave system, consisting of two progressive primary
waves in finite water depth and all components due to nonlinear interaction, is
investigated in detail by means of analytically solving the fully nonlinear wave
equations as a nonlinear boundary-value problem. It is found that multiple steady-
state fully resonant waves exist in some cases which have no exchange of wave
energy at all, so that the energy spectrum is time-independent. Further, the steady-state
resonant wave component may contain only a small proportion of the wave energy.
However, even in these cases, there usually exist time-dependent periodic exchanges
of wave energy around the time-independent energy spectrum corresponding to such a
steady-state fully resonant wave, since it is hard to be exactly in such a balanced state
in practice. This view serves to deepen and enrich our understanding of the resonance
of gravity waves.
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1. Introduction
In physics, resonance is the tendency of a system to oscillate at a greater amplitude

at some frequencies, i.e. the system’s resonance frequencies, than at others. At these
frequencies, even small periodic driving forces can often produce large-amplitude
oscillations, because the system stores vibrational energy.

The so-called gravity wave resonance has been a hot topic in fluid mechanics since
the last century. In his pioneering work, Phillips (1960, 1981) found the resonance
criterion of a quartet of progressive waves in deep water,

k1 ± k2 ± k3 ± k4 = 0, ω1 ± ω2 ± ω3 ± ω4 = 0, (1.1)

where ki denotes the wavenumber, ωi = √gki with ki = |ki| is the angular frequency,
g is the acceleration due to gravity, respectively. In particular, when two of the four
waves have the same wavenumber, say, k1 = k4, so that

k3 = 2k1 − k2, ω3 = 2ω1 − ω2, (1.2)
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the corresponding resonance criterion leads to

(2ω1 − ω2)
2 = g|2k1 − k2|, (1.3)

which comes from the dispersion relation ω2
3 = gk3 given by the linear wave theory.

In this special case, Phillips (1960) found that the amplitude of the resonant wave
component, if it is zero initially, grows linearly with time. This conclusion for
small times was verified later by Longuet-Higgins (1962) using perturbation methods.
Meanwhile, in order to find the physical mechanism of wave resonance, Benney (1962)
established the evolution equations of wave mode amplitudes, and demonstrated the
well-known time-dependent periodic exchange of wave energy governed by Jacobian
elliptic functions, when Phillips’ resonance criterion is fully or nearly satisfied.
Following Benney’s excellent work, Bretherton (1964) solved the evolution equations
of the oscillation amplitudes over a characteristic time.

To check the theoretical results some experiments were done. Longuet-Higgins &
Smith (1966) and McGoldrick et al. (1966) experimentally studied the interaction of
two mutually orthogonal primary wave trains generated in a wave tank, and identified
the resonant wave whose amplitude grows with the interaction distance. It was found
that the resonant wave does not appear when Phillips’ resonant condition is not
satisfied. This experiment demonstrated wave resonance for the first time.

The above-mentioned studies were on resonant waves in deep water. In the shallow
water case, Phillips (1960) pointed out that any pair of parallel gravity waves would
interact resonantly with each other, because they have no dispersive property. Recently,
based on the quadratic Boussinesq equations, Onorato et al. (2009) studied the energy
transfer of shallow water waves, and found that the four-wave resonant interactions
are included naturally. Katsardi & Swan (2011) studied numerically the evolution
of waves propagating unidirectionally in intermediate and shallow water, and found
that the third-order resonant term is the dominant influence as the water depth
reduces.

Following the pioneering work of Phillips (1960), most researchers have focused
on the evolution of resonant waves whose amplitude is zero at t = 0. Obviously,
Phillips’ result for a linearly growing resonant wave amplitude is valid only for
short times, otherwise the resonant wave would contain all the wave energy, which
is, however, physically impossible. Physically speaking, if the viscosity of the fluid
is neglected, the wave system should be in some kind of stable balanced state if
the time is sufficiently long. As discovered by Benney (1962), one such balanced
state corresponds to the time-dependent periodic exchange of wave energy between
different wave components. Does there exist some form of balanced state for which
there is no exchange of wave energy at all when Phillips’ resonance criterion is fully
satisfied?

Liao (2011) investigated this kind of steady state for the nonlinear interaction of
two trains of propagating waves in deep water. Here, the steady state means that there
is no exchange at all of wave energy between different wave components, that is, all
amplitudes of wave components are independent of time. By means of the so-called
homotopy analysis method (HAM) developed by Liao (1992, 1999, 2003, 2010, 2012),
a powerful analytic method for highly nonlinear problems, the exact nonlinear wave
equations were solved and the convergent series solutions were obtained in both
resonant and non-resonant cases. Liao (2011) found, for the first time, that this kind
of steady-state wave system has three different solutions when Phillips’ resonance
criterion is satisfied! In particular, it is found that, although the amplitude of the
resonant wave component is of the same order as that of the two primary waves,
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it is not always the largest one. In some cases, the amplitude of the resonant wave
component is much smaller than the primary ones, i.e. the resonant wave components
can contain only a small proportion of the total wave energy.

In this article, in order to confirm the above conclusions of Liao (2011) in general
cases, we further investigate this kind of steady-state system for the nonlinear
interaction of two trains of waves propagating in water of finite depth, when
Phillips’ resonance condition is exactly satisfied. This steady-state wave system, if
it does indeed exist, has steady wavenumber, frequency and amplitude for each wave
component, which are independent of time. Using the HAM in a similar way, we
obtain six different steady-state resonant waves, three more than those given by Liao
(2011). Further, it is found once again that the amplitude of the resonant component is
not always dominant: it can be much smaller than that of the primary ones in some
cases. This confirms that Liao’s conclusions (2011) concerning steady-state resonant
waves in deep water also hold for steady-state resonant waves in finite water depth
and thus have general application. Furthermore, the effect of the water depth on
steady-state resonant waves is investigated for the first time. All of this will help to
deepen and enrich our understanding of the resonance for gravity waves.

This paper is organized as follows. The mathematical description of the physical
problem is given in § 2. The basic idea of the solution procedure in the HAM context
is described in § 3. The multiple solutions of the steady-state resonant waves for
a particular case are given in § 4. The multiple solutions of steady-state resonant
waves for some other cases are presented in § 5. Concluding remarks and discussions
follow in § 6. The detailed mathematical formulas related to the HAM are given in
appendix A. Our main conclusions are confirmed by means of Zakharov’s equation, as
described briefly in appendix B.

2. The mathematical description
2.1. The original initial/boundary-value problem

Let us consider the nonlinear interactions of two trains of progressive gravity waves
with small amplitudes, propagating in water of finite depth d. We assume that the
fluid is inviscid and incompressible, the flow is irrotational, and the surface tension
is neglected. The coordinate system (x, y, z) is set on the free surface, with z-axis
positive vertically from the free surface. The governing equation of the velocity
potential φ(x, y, z, t) is given by

∇2φ = 0, −d < z< η(x, y, t), (2.1)

subject to the two boundary conditions on the unknown free surface z= η(x, y, t),

∂2φ

∂t2
+ g

∂φ

∂z
+ ∂ |∇φ|

2

∂t
+∇φ ·∇

(
1
2
|∇φ|2

)
= 0, (2.2)

gη + ∂φ
∂t
+ 1

2
|∇φ|2 = 0, (2.3)

and the bottom boundary condition

∂φ

∂z
= 0 at z=−d, (2.4)
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where

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(2.5)

is a linear operator, with i, j, k denoting unit vectors in the x, y, z directions,
respectively. Here all variables are dimensional.

2.2. Solution formulas
Although the governing equation (2.1) and the bottom boundary condition (2.4) are
linear, the two nonlinear boundary conditions (2.2) and (2.3) are satisfied on the
unknown free surface η(x, y, t). Such nonlinear partial differential equations (PDEs)
are difficult to solve in general, often with rather complicated solutions. However,
when the so-called steady-state wave system with time-independent wavenumber,
frequency and amplitude for each component does indeed exist, the corresponding
velocity potential φ(x, y, z, t) and the wave elevation η(x, y, t) have rather simple
expressions, as shown below. Our goal is to discover such steady-state resonant waves
when they do indeed exist.

By means of perturbation methods, Benney (1962) and Bretherton (1964) assumed
that, when there are l primary waves, the wave elevation has the form

η =
∑

l

{Al(τ ) exp[i(kl · r− ωlt)] + A−l(τ ) exp[−i(kl · r− ωlt)]} , l= 1, 2, . . . , (2.6)

where i = √−1, τ = εt, A−l(τ ) is the complex conjugate of Al(τ ), ε is a small
parameter that makes Al(τ ) a slowly varying function, kl is the wavenumber of the lth
primary wave and ω2

l = g|kl| corresponds to the classical linear theory, and r= xi + yj
is a spatial vector for (x, y), respectively. Similar expressions can also be found in the
monograph by Craik (1988). Benney (1962) and Bretherton (1964) gave the evolution
equations of Al(τ ) and found that Al(τ ) can be expressed in terms of elliptic functions.

Assume that steady-state resonant waves exist, so that the corresponding wave
elevation can be expressed by

η(x, y, t)=
+∞∑
l=1

Al cos(kl · r− σlt), (2.7)

where Al is a constant and σl is the actual frequency. Note that, due to weakly
nonlinear effects, the actual frequencies of waves, σ1 and σ2, are often slightly
different from the linear dispersion relation ωl = √gkl tanh(kld) and also depend on
the wave amplitudes. The above formula provides the solution for the wave elevation.

Note that the existence of steady-state resonant waves is merely assumed here. Our
strategy is first to make this assumption and then to prove that the corresponding
steady-state resonant waves do indeed exist in some cases, if they satisfy the fully
nonlinear wave equation (2.1)–(2.4). If no such steady-state solutions can be found,
it indicates that the assumption is wrong, that is, no steady-state resonant waves can
exist. In this way, we can investigate the existence of steady-state resonant waves in
detail.

For simplicity, let us consider a steady-state resonant wave system consisting of two
primary progressive waves with wavenumbers k1 and k2. According to the elevation
expression (2.7), we define the two variables

ξ1 = k1 · r− σ1t, ξ2 = k2 · r− σ2t, (2.8)
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related to the two primary waves, with the definitions

r= xi+ yj, (2.9)
k1 = k1(cosα1i+ sinα1 j), (2.10)
k2 = k2(cosα2i+ sinα2 j), (2.11)

where kl = |kl| and αl (l = 1, 2) is the angle between the x-axis and the wavenumber
vector kl, σl is the wave angular frequency of the lth primary wave, respectively. Using
the new variables ξ1, ξ2 and the solution expression (2.7), the wave elevation η(x, y, t)
of a steady-state resonant wave system is expressed by

η(ξ1, ξ2)=
+∞∑
m=0

+∞∑
n=−∞

am,n cos(mξ1 + nξ2), (2.12)

where am,n is a constant to be determined later. Note that the time t does not appear in
the above expression. Accordingly, the velocity potential φ is dependent only upon ξ1,
ξ2 and z. Then, using the above definitions, the governing equation (2.1) becomes

k2
1

∂2φ

∂ξ 2
1

+ 2k1 · k2
∂2φ

∂ξ1∂ξ2
+ k2

2

∂2φ

∂ξ 2
2

+ ∂
2φ

∂z2
= 0, −d < z< η(ξ1, ξ2), (2.13)

subject to the boundary conditions on the unknown free surface z= η(ξ1, ξ2),

σ 2
1

∂2φ

∂ξ 2
1

+ 2σ1σ2
∂2φ

∂ξ1∂ξ2
+ σ 2

2

∂2φ

∂ξ 2
2

+ g
∂φ

∂z
− 2

(
σ1
∂f

∂ξ1
+ σ2

∂f

∂ξ2

)
+ ∇̂φ · ∇̂f = 0, (2.14)

η = 1
g

(
σ1
∂φ

∂ξ1
+ σ2

∂φ

∂ξ2
− f

)
, (2.15)

and the bottom condition

∂φ

∂z
= 0 at z=−d, (2.16)

where

∇̂ = k1
∂

∂ξ1
+ k2

∂

∂ξ2
+ k

∂

∂z
, (2.17)

and

f = 1
2

[
k2

1

(
∂φ

∂ξ1

)2

+ 2k1 · k2
∂φ

∂ξ1

∂φ

∂ξ2
+ k2

2

(
∂φ

∂ξ2

)2

+
(
∂φ

∂z

)2
]
. (2.18)

Note that the time t disappears in all the above equations. In this way, the original
initial/boundary-value problem (2.1)–(2.4) becomes a nonlinear boundary-value one,
mainly because we are only interested in the steady-state resonant waves but
completely neglect the corresponding initial conditions for them.

According to the linear governing equation (2.13) and the bottom boundary
condition (2.16), the velocity potential φ(ξ1, ξ2, z) should be in the form

φ(ξ1, ξ2, z)=
+∞∑
m=0

+∞∑
n=−∞

bm,nΨm,n(ξ1, ξ2, z) (2.19)
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with the definition

Ψm,n = sin(mξ1 + nξ2)
cosh[|mk1 + nk2|(z+ d)]

cosh[|mk1 + nk2|d] , (2.20)

where bm,n is a constant to be determined. Note that (2.19) automatically satisfies the
linear governing equation (2.13) and the bottom boundary condition (2.16). From a
mathematical viewpoint, our aim is to find the velocity potential φ(ξ1, ξ2, z) and the
elevation η(ξ1, ξ2) in the form of (2.12) and (2.19), respectively, which satisfy the two
nonlinear boundary conditions (2.14) and (2.15) on the free surface z= η(ξ1, ξ2).

3. Analytic approach based on the homotopy analysis method
In this section, the nonlinear boundary-value problem governed by the PDEs

(2.13)–(2.16) is solved by means of the homotopy analysis method.
Traditionally, perturbation methods have been widely applied to solve nonlinear

problems related to gravity waves. It is well known that perturbation methods are
strongly dependent upon small physical parameters, i.e. the so-called perturbation
quantities. To overcome the restrictions of perturbation methods and some traditional
non-perturbation techniques, Liao (1992, 1999, 2003, 2010, 2012) developed an
analytic technique for highly nonlinear problems, namely the homotopy analysis
method (HAM). Unlike perturbation techniques, the HAM is entirely independent of
small physical parameters. Further, being based on the homotopy concept in topology,
the HAM gives us great freedom in the choice of the initial guess, the equation type
of linear subproblems and the basis functions of solution. In particular, unlike all other
analytic techniques, the HAM provides a simple way to guarantee the convergence
of approximations and is thus valid for highly nonlinear problems in general. For
example, unlike asymptotic/perturbation formulas, which are often valid only a couple
of days or weeks prior to expiry, the optimal exercise boundary of an American put
option given by Liao (2012) (see chapter 13) using the HAM may be valid for a
couple of dozen years or even half a century. For details on the HAM, refer to the two
books by Liao (2003, 2012).

3.1. Continuous variation
Let φ0(ξ1, ξ2, z), η0(ξ1, ξ2) denote the initial guesses of the steady-state velocity
potential φ(ξ1, ξ2, z) and wave elevation η(ξ1, ξ2), respectively. For simplicity, we
choose η0(ξ1, ξ2) = 0. Let q ∈ [0, 1] denote an embedding parameter and let
c0 6= 0 be the so-called convergence-control parameter. Here, both q and c0 are
auxiliary parameters without physical meaning. Instead of solving the nonlinear PDEs
(2.13)–(2.16) directly, we first construct a family (with respect to q) of PDEs about
two continuous variations φ̆(ξ1, ξ2, z; q) and η̆(ξ1, ξ2; q), governed by the so-called
zeroth-order deformation equations,

∇̂2φ̆(ξ1, ξ2, z; q)= 0, −d < z< η̆(ξ1, ξ2; q), (3.1)

subject to the two boundary conditions on the unknown free surface z= η̆(ξ1, ξ2; q),
(1− q)L [φ̆(ξ1, ξ2, z; q)− φ0(ξ1, ξ2, z)] = qc0N1[φ̆(ξ1, ξ2, z; q)], (3.2)

(1− q)η̆(ξ1, ξ2; q)= qc0N2[η̆(ξ1, ξ2; q), φ̆(ξ1, ξ2, z; q)], (3.3)

and the bottom condition

∂φ̆(ξ1, ξ2, z; q)
∂z

= 0 at z=−d, (3.4)
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where L is an auxiliary linear operator with the property L (0) = 0, N1 and N2 are
nonlinear differential operators defined by

N1[φ̆] = σ 2
1

∂2φ̆

∂ξ 2
1

+ 2σ1σ2
∂2φ̆

∂ξ1∂ξ2
+ σ 2

2

∂2φ̆

∂ξ 2
2

+ g
∂φ̆

∂z

− 2

(
σ1
∂ f̆

∂ξ1
+ σ2

∂ f̆

∂ξ2

)
+ ∇̂φ̆ · ∇̂f̆ , (3.5)

N2[η̆, φ̆] = η̆(ξ1, ξ2; q)− 1
g

[
σ1
∂φ̆(ξ1, ξ2, z; q)

∂ξ1
+ σ2

∂φ̆(ξ1, ξ2, z; q)
∂ξ2

− f̆

]
, (3.6)

with the definition

f̆ = 1
2∇̂φ̆ · ∇̂φ̆. (3.7)

Note that the definitions of N1 and N2 are based on the two boundary conditions
(2.14) and (2.15), respectively.

When q= 0, the zeroth-order deformation equations (3.1)–(3.4) have the solution

φ̆(ξ1, ξ2, z; 0)= φ0(ξ1, ξ2, z), (3.8)
η̆(ξ1, ξ2; 0)= η0(ξ1, ξ2)= 0. (3.9)

When q = 1, the zeroth-order deformation equations (3.1)–(3.4) are equivalent to the
original PDEs (2.13)–(2.16), so we have the solution

φ̆(ξ1, ξ2, z; 1)= φ(ξ1, ξ2, z), (3.10)
η̆(ξ1, ξ2; 1)= η(ξ1, ξ2). (3.11)

Thus, as the embedding parameter q ∈ [0, 1] increases from 0 to 1, φ̆(ξ1, ξ2, z; q)
and η̆(ξ1, ξ2; q) vary continuously from their initial guess solutions φ0(ξ21, ξ2, z)
and η0(ξ1, ξ2) = 0 to the exact velocity potential φ(ξ1, ξ2, z) and the wave elevation
η(ξ1, ξ2), respectively. Thus, the zeroth-order deformation equations (3.1)–(3.4) indeed
construct two continuous variations φ̆(ξ1, ξ2, z; q) and η̆(ξ1, ξ2; q). Such continuous
variations (or deformations) are called homotopies in topology, expressed by

φ̆(ξ1, ξ2, z; q) : φ0(ξ1, ξ2, z)∼ φ(ξ1, ξ2, z), (3.12)
η̆(ξ1, ξ2; q) : η0(ξ1, ξ2)∼ η(ξ1, ξ2). (3.13)

It should be emphasized that the above two continuous deformations are also
dependent upon the convergence-control parameter c0, which has no physical meaning
but provides a convenient way to guarantee the convergence of approximations,
as shown later. In fact, it is the so-called convergence-control parameter c0 that
differentiates the HAM from all other analytic techniques, as pointed out by Liao
(2012).

The Maclaurin series of φ̆(ξ1, ξ2, z; q) and η̆(ξ1, ξ2; q), with respect to the
embedding parameter q ∈ [0, 1], reads

φ̆(ξ1, ξ2, z; q)=
+∞∑
n=0

φn(ξ1, ξ2, z)qn, (3.14)

η̆(ξ1, ξ2; q)=
+∞∑
n=0

ηn(ξ1, ξ2)q
n, (3.15)
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where

φn(ξ1, ξ2, z)= 1
n!
∂nφ̆(ξ1, ξ2, z; q)

∂qn

∣∣∣∣∣
q=0

, (3.16)

ηn(ξ1, ξ2)= 1
n!
∂nη̆(ξ1, ξ2; q)

∂qn

∣∣∣∣
q=0

. (3.17)

Using (3.10) and (3.11) and assuming that the convergence-control parameter c0 is
properly chosen so that the Maclaurin series (3.14) and (3.15) are convergent at q= 1,
we have the so-called homotopy-series solution

φ(ξ1, ξ2, z)= φ0(ξ1, ξ2, z)+
+∞∑
n=1

φn(ξ1, ξ2, z), (3.18)

η(ξ1, ξ2)=
+∞∑
n=1

ηn(ξ1, ξ2). (3.19)

As shown later in § 3.2, the unknown term φn(ξ1, ξ2, z) is governed by a linear PDE,
and it is straightforward to obtain ηn(ξ1, ξ2) as long as φn−1(ξ1, ξ2, z) is known. In this
way, the original nonlinear PDEs (2.13)–(2.16) are transformed into an infinite number
of linear PDEs. However, unlike perturbation techniques, such transformation in the
context of the HAM does not need any small physical parameters. Further, being based
on the concept of homotopy in topology, it gives us great freedom in the choice
of auxiliary linear operator L , the convergence-control parameter c0 and the initial
guess φ0(ξ1, ξ2, z), which greatly simplifies resolution of the nonlinear PDEs, as shown
below.

Since the HAM provides freedom in the choice of auxiliary linear operator, and
considering the linear part of (2.14), we choose

L φ =
(
ω2

1

∂2φ

∂ξ 2
1

+ 2ω1ω2
∂2φ

∂ξ1∂ξ2
+ ω2

2

∂2φ

∂ξ 2
2

+ g
∂φ

∂z

)
, (3.20)

where

ω1 =
√

gk1 tanh(k1d), ω2 =
√

gk2 tanh(k2d) (3.21)

are given by linear wave theory. The above auxiliary linear operator has the property

LΨm,n = λm,nΨm,n, (3.22)

where

λm,n =− (mω1 + nω2)
2+g|mk1 + nk2| tanh(|mk1 + nk2|d) (3.23)

can be regarded as an eigenvalue of L . Thus, Ψm,n defined by (2.20) can also be
regarded as a corresponding eigenfunction of the auxiliary linear operator L .

3.2. High-order deformation equation
Differentiating the zeroth-order deformation equations (3.1)–(3.4) m times with respect
to q, then dividing them by m! and setting q = 0, we have the mth-order deformation
equation

∇̂2φm = 0, −d < z< 0, (3.24)
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subject to the two boundary conditions at z= 0,

L̄ [φm] = c0∆
φ

m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2), (3.25)

ηm = c0∆
η

m−1(ξ1, ξ2)+ χmηm−1, (3.26)

and the bottom condition

∂φm

∂z
= 0 z=−d, (3.27)

where

χm =
{

0 when m 6 1,
1 when m> 1.

(3.28)

The detailed expressions of ∆φ

m−1(ξ1, ξ2), S̄m(ξ1, ξ2), Sm−1(ξ1, ξ2) and ∆η

m−1(ξ1, ξ2) are
given in appendix A, and the linear operator L̄ is defined by

L̄ [φm]=
(
ω2

1

∂2φm

∂ξ 2
1

+ 2ω1ω2
∂2φm

∂ξ1∂ξ2
+ ω2

2

∂2φm

∂ξ 2
2

+ g
∂φm

∂z

)∣∣∣∣
z=0

, (3.29)

with the property

L̄ −1[sin(mξ1 + nξ2)] = Ψm,n

λm,n
, λm,n 6= 0. (3.30)

For details, refer to Liao (2011, 2012). Note that the right-hand sides of (3.25) and
(3.26) are only related to approximations at lower orders and are thus regarded as
known. So, it is straightforward to obtain ηm by means of (3.26). Further, Ψm,n

defined by (2.20) automatically satisfies the Laplace equation (3.24) and the boundary
condition (3.27) at bottom. So,

φ∗m = L̄ −1
[
c0∆

φ

m−1(ξ1, ξ2)− S̄m(ξ1, ξ2)+ χmSm−1(ξ1, ξ2)
]

(3.31)

gives a special solution of φm. Thus, by means of the inverse operator (3.30) and
a computer algebra system such as Mathematica, it is easy to solve the high-order
deformation equation (3.24) with the linear boundary conditions (3.25)–(3.27).

3.3. Initial guess of potential function
As mentioned by Chen (1990), Phillips’ resonance criterion of four small-amplitude
waves in water of finite depth, when two of them are equal, reads

(2ω1 − ω2)
2 = g|2k1 − k2| tanh(|2k1 − k2|d), (3.32)

where ω1 and ω2 are defined by (3.21). It is interesting that, according to (3.23),
we have λ2,−1 = 0 when the above resonance criterion (3.32) is satisfied. Further,
according to (3.23), we always have λ1,0 ≡ 0 and λ0,1 ≡ 0, no matter whether the
resonance criterion (3.32) is satisfied. In other words, there are three zero eigenvalues
λ1,0, λ0,1 and λ2,−1 when Phillips’ resonance criterion (3.32) is satisfied. Thus, from a
mathematical viewpoint, the common solution of φm reads

φm = φ∗m + AmΨ1,0 + BmΨ0,1 + CmΨ2,−1, (3.33)

where φ∗m given by (3.31) is a special solution of the mth-order deformation equations
(3.24)–(3.27), and Am,Bm,Cm are constants to be determined.
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Obviously, according to (3.30), the solution of the high-order deformation equations
(3.24)–(3.27) has secular terms when the right-hand side of (3.25) contains the terms
sin ξ1, sin ξ2 and sin(2ξ1 − ξ2). This is exactly the mathematical reason why the wave
amplitude of a resonant wave given by perturbation methods grows linearly with time.
Fortunately, the HAM gives us great freedom in the choice of the initial guess solution
φ0(ξ1, ξ2, z), so we can choose the initial guess

φ0(ξ1, ξ1, z)= A0Ψ1,0 + B0Ψ0,1 + C0Ψ2,−1, (3.34)

where A0, B0 and C0 are unknown constants, which are determined by avoiding the
above-mentioned secular terms, as shown later. Note that the above initial guess φ0

automatically satisfies the governing equation (2.13) and the bottom condition (2.16)
for arbitrary values of A0,B0,C0.

Note that, from the viewpoint of perturbation methods, (3.34) implies that the
resonant wave is of the same order as the primary waves. In fact, if the resonant
component is neglected in (3.34), it is impossible to obtain steady-state resonant
solutions. This is exactly the mathematical reason why Phillips (1960, 1981) obtained
the so-called resonant waves with linearly increasing wave amplitude. Fortunately,
since the HAM is independent of small/large physical parameters, we need not
consider the orders of different wave components at all.

4. Steady-state resonant waves for α2 = π/36
Without loss of generality, let us first consider the following particular case:

σ1

ω1
= σ2

ω2
= ε, α1 = 0, α2 = π36

. (4.1)

Here, the value of ε is slightly larger than 1, since Phillips’ criterion (3.32) is valid
only for small-amplitude waves.

Substituting all of these parameters into Phillips’ criterion (3.32), we have the
following nonlinear algebraic equation:

−49
4

√
4
[
(k1d)

(k2d)

]2

+ 1− 4
(k1d)

(k2d)
cos(α2 − α1)

× tanh

(k2d)

√
4
[
(k1d)

(k2d)

]2

+ 1− 4
(k1d)

(k2d)
cos(α2 − α1)


+ 196

5
(k1d)

(k2d)
tanh(k1d)+ 49

5
tanh(k2d)

− 196
5

√
(k1d)

(k2d)
tanh(k1d)

√
tanh(k2d)= 0. (4.2)

Without loss of generality, let us first consider the case of ε = 1.0003 and k2d = 3π/5.
In this case, (4.2) has three solutions, k1d = 2.06269, 1.69564 and 0.867072,
respectively, corresponding to three resonance states with k2/k1 = 0.913835, 1.11165
and 2.173797, labelled A, B and C in figure 1. Obviously, for different k2d and ε, the
ratios of k2/k1 for the corresponding fully resonant waves are different, as listed in
table 1. Note that k2/k1 of resonance state A is always less than 1, k2/k1 of resonance
state B is always greater than 1 but less than 2, k2/k1 of resonance state C is always
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FIGURE 1. (Colour online) Ratio of k2/k1 for (4.1) with ε = 1.0003 and k2d = 3π/5 for fully
resonant waves.

k2d Resonance state
A B C

π/2 0.915363 1.114412 2.127085
3π/5 0.913835 1.111651 2.173797
7π/10 0.910292 1.112974 2.209941
4π/5 0.906069 1.116521 2.237180
9π/10 0.902109 1.121135 2.257012
π 0.898910 1.126032 2.270822
13π/10 0.893996 1.138198 2.287568
3π/2 0.892992 1.142949 2.286638
17π/10 0.892636 1.145541 2.281206
21π/10 0.892479 1.147408 2.265765
3π 0.892462 1.147851 2.235292
+∞ 0.892461 1.147859 2.196364

TABLE 1. Ratios of k2/k1 for the three different resonance states for (4.1) with various k2d
when Phillips’ resonance criterion (3.32) is exactly satisfied. The values of A, B and C are
obtained by means of k2 = π/5 (m−1) and the corresponding values of d.

greater than 2, respectively. Note also that resonance states B and C in table 1 were
neglected by Liao (2011) for steady-state fully resonant waves in deep water.

4.1. Steady-state fully resonant waves for resonance state A
Without loss of generality, we first take k2/k1 = 0.913835 for (4.1) with k2d = 3π/5
as an example, corresponding to resonance state A, to illustrate the above-mentioned
analytic approach in detail.

Since Phillips’ resonance criterion (3.32) is fully satisfied, there are three zero
eigenvalues λ1,0, λ0,1 and λ2,−1, as mentioned above. Thus, according to (3.30), the
coefficients of the terms sin ξ1, sin ξ2 and sin(2ξ1 − ξ2) on the right-hand side of (3.25)
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A0 B0 C0

Group A1
−0.061834 0.043603 −0.0866169
−0.061834 −0.043603 0.0866169

0.061834 0.043603 −0.0866169
0.061834 −0.043603 0.0866169

Group A2
−0.0616515 −0.0582749 −0.0435411
−0.0616515 0.0582749 0.0435411

0.0616515 −0.0582749 −0.0435411
0.0616515 0.0582749 0.0435411

Group A3
−0.0616228 0.115536 −0.0326345
−0.0616228 −0.115536 0.0326345

0.0616228 0.115536 −0.0326345
0.0616228 −0.115536 0.0326345

TABLE 2. Solutions of the nonlinear algebraic equations (4.4)–(4.6) when k2/k1 =
0.913835 (corresponding to resonance state A) for (4.1) with ε = 1.0003 and k2d = 3π/5.
The values of A0,B0 and C0 are obtained by means of k2 = π/5 (m−1) and d = 3 (m).

must be zero so as to avoid the secular terms, because they do not satisfy the solution
expression (2.19). For example, substituting the initial guess (3.34) into the first-order
deformation equation (3.25), we have

L̄ [φ1] = c01
φ

0 − S̄1

= b̃1,0 sin ξ1 + b̃0,1 sin ξ2 + b̃2,0 sin 2ξ1 + b̃0,2 sin 2ξ2

+ b̃1,−1 sin(ξ1 − ξ2)+ b̃1,1 sin(ξ1 + ξ2)

+ b̃1,2 sin(ξ1 + 2ξ2)+ b̃3,0 sin 3ξ1 + b̃0,3 sin 3ξ2

+ b̃1,−2 sin(ξ1 − 2ξ2)+ b̃2,−1 sin(2ξ1 − ξ2)

+ b̃3,−1 sin(3ξ1 − ξ2)+ b̃2,−2 sin(2ξ1 − 2ξ2)

+ b̃2,−3 sin(2ξ1 − 3ξ2)+ b̃3,−2 sin(3ξ1 − 2ξ2)

+ b̃2,1 sin(2ξ1 + ξ2)+ b̃4,−1 sin(4ξ1 − ξ2)

+ b̃4,−2 sin(4ξ1 − 2ξ2)+ b̃4,−3 sin(4ξ1 − 3ξ2)

+ b̃5,−2 sin(5ξ1 − 2ξ2)+ b̃6,−3 sin(6ξ1 − 3ξ2), (4.3)

where b̃m,n depends upon the three unknown coefficients A0, B0 and C0 of the initial
guess (3.34). According to (3.30), we must enforce b̃1,0 = 0, b̃0,1 = 0 and b̃2,−1 = 0 to
avoid secular terms, which gives us a set of three nonlinear algebraic equations:

−0.00391489+ 0.206A2
0 + 0.307855B2

0 + 0.413579B0C0 + 0.547011C2
0 = 0, (4.4)

−0.00352853+0.372512A2
0+0.13869B2

0+0.247221A2
0C0/B0+0.495605C2

0 = 0, (4.5)

0.16962A2
0B0−0.0043213C0+0.45485A2

0C0+0.341129B2
0C0+0.301249C3

0 = 0. (4.6)

This set of nonlinear algebraic equations (4.4)–(4.6) has 12 solutions with real
values, as listed in table 2. Each of them corresponds to a steady-state fully resonant
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wave system, as shown later. They can be divided into three groups called A1, A2
and A3: each group has the same values of |A0|, |B0| and |C0|. Note that, for a
steady-state fully resonant wave system with the wave elevation in the form (2.12),
the wave energy spectrum is determined by the square of wave components, i.e. a2

m,n,
and is therefore independent of time. Thus, the three initial guesses φ0(ξ1, ξ2, z) in
the same group lead to the same time-independent spectrum of wave energy. Indeed,
our computations based on the convergent analytic series indicate that the waves given
by different initial guess φ0(ξ1, ξ2, z) in the same group have the same wave energy
spectrum, as shown later. Therefore, it is necessary for us to investigate only one case
of A0, B0 and C0 in each group.

As long as A0, B0 and C0 are determined, the initial guess φ0(ξ1, ξ2, z) is known.
Then, substituting this known φ0 into (3.26), we can directly obtain η1(ξ1, ξ2). Note
that from now on the right-hand side of (4.3) does not contain the terms sin ξ1, sin ξ2

and sin(2ξ1 − ξ2). So, using (3.30), it is straightforward to obtain

φ1 = φ∗1 + A1Ψ1,0 + B1Ψ0,1 + C1Ψ2,−1, (4.7)

where A1, B1 and C1 are unknown constant coefficients, and

φ∗1 = d̃2,0Ψ2,0 + d̃3,0Ψ3,0

+ d̃2,−3Ψ2,−3 + d̃4,−3Ψ4,−3 + d̃6,−3Ψ6,−3 + d̃1,−2Ψ1,−2 + d̃2,−2Ψ2,−2

+ d̃3,−2Ψ3,−2 + d̃4,−2Ψ4,−2 + d̃5,−2Ψ5,−2 + d̃1,−1Ψ1,−1 + d̃3,−1Ψ3,−1

+ d̃4,−1Ψ4,−1 + d̃0,2Ψ0,2 + d̃0,3Ψ0,3 + d̃1,1Ψ1,1 + d̃2,1Ψ2,1 + d̃1,2Ψ1,2 (4.8)

is a special solution with the definition d̃m,n = b̃m,n/λm,n. Here, the eigenvalue λm,n is
given by (3.23). So, using a computer algebra system such as Mathematica or Maple,
it is rather easy to obtain η1 and φ1 in this way.

When m > 2, the unknown coefficients Am−1, Bm−1 and Cm−1 in the common solution
(3.33) can be obtained by avoiding the secular terms in a similar way, except that
they are determined by a set of linear algebraic equations. As long as Am−1, Bm−1 and
Cm−1 are known, we can obtain ηm(ξ1, ξ2) and φm(ξ1, ξ2, z) in a similar way. All of this
can be done efficiently by means of Mathematica or Maple. Thus, we can obtain the
high-order approximations of the velocity potential φ(ξ1, ξ2, z) and the wave elevation
η(ξ1, ξ2) efficiently.

It should be emphasized that the so-called convergence-control parameter c0, which
is used to guarantee the convergence of our approximations, is still unknown at this
point. The optimal value of c0 corresponds to the fastest decrease of the averaged
residual squares εφm and εηm of the two free-surface boundary conditions, defined by

εφm =
1

(1+M)2

M∑
i=0

M∑
j=0

[
m∑

n=0

∆φ
n (i4 ξ1, j4 ξ2)

]2

, (4.9)

εηm =
1

(1+M)2

M∑
i=0

M∑
j=0

[
m∑

n=0

∆η
n(i4 ξ1, j4 ξ2)

]2

, (4.10)

respectively, where ∆φ
n and ∆η

n are given in appendix A, M is the number of the
discrete points, and

4ξ1 =4ξ2 = πM . (4.11)
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FIGURE 2. Residual squares of log10ε
φ
m and log10ε

η
m versus c0 for (4.1) with ε = 1.0003,

k2/k1 = 0.913835 and k2d = 3π/5 when A0 = −0.061834, B0 = 0.043603 and C0 =−0.0866169 (corresponding to group A1). Solid line, first-order approximation; dashed
line, third-order approximation; dotted line, fifth-order approximation; dash-dot-dotted line,
seventh-order approximation.

A convergence theorem given by Liao (2003) (Theorem 2.1) guarantees the rationality
of (4.9) and (4.10). In this paper, M = 10 is used. For example, when A0 =−0.061834,
B0 = 0.043603 and C0 = −0.0866169, corresponding to group A1, the averaged
residual squares εφm and εηm at different orders of approximation are as shown in
figure 2. It is found that the residual squares of two free-surface boundary conditions
have the smallest values around c0 = −0.98. So, we choose the optimal convergence-
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FIGURE 3. Residual squares of log10ε
φ
m and log10ε

η
m versus the approximation order m

for (4.1) with ε = 1.0003, k2/k1 = 0.913835 and k2d = 3π/5 when A0 = −0.061834,
B0 = 0.043603 and C0 = −0.0866169 (corresponding to group A1) by means of c0 = −0.98.
Solid line, log10ε

φ
m; dashed line, log10ε

η
m.

Order of approx. Amplitude of wave component Residual squares
m |a1,0|/d |a0,1|/d |a2,−1|/d ε

φ

m−1 ε
η

m−1

2 0.004115 0.003560 0.008845 2.05× 10−7 7.80× 10−6

6 0.003738 0.003251 0.008790 2.66× 10−10 3.60× 10−8

10 0.003743 0.003268 0.008782 6.61× 10−13 8.74× 10−11

14 0.003739 0.003269 0.008782 1.40× 10−14 1.44× 10−12

18 0.003739 0.003269 0.0087817 3.38× 10−16 3.49× 10−14

20 0.003739 0.003269 0.0087817 4.41× 10−17 4.89× 10−15

TABLE 3. The mth-order approximation of |a1,0|/d, |a0,1|/d and |a2,−1|/d by means of
c0 = −0.98, together with the corresponding residual square εφm−1 and εηm−1 for (4.1) with
ε = 1.0003, k2d = 3π/5 and k2/k1 = 0.913835 (corresponding to resonance state A) when
A0 =−0.061834, B0 = 0.043603 and C0 =−0.0866169 (corresponding to group A1).

control parameter c0 = −0.98. Using this optimal value of c0, the two averaged
residual squares decrease rather quickly, as shown in table 3 and figure 3. Note
that, at the 20th order of approximation, the averaged residual squares of the two
free-surface boundary conditions decrease to the level of 10−17 and 10−15, respectively,
which indicates, without doubt, the convergence of our approximation. Note also that
the approximations of the amplitudes a0,1, a1,0, a2,−1 of the two primary waves cos ξ1,
cos ξ2 and the resonant wave component cos(2ξ1 − ξ2) converge quickly, as shown in
table 3.

Similarly, we obtain the convergent velocity potential and wave elevation for
group A2 by means of c0 = −1 and for group A3 by means of c0 = −1.15. The
corresponding wave amplitudes of the primary and resonant wave components are
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Amplitude of wave components
(Primary wave) (Primary wave) (Resonant wave)
|a1,0|/d |a0,1|/d |a2,−1|/d

Group A1 0.003739 0.003269 0.008782
Group A2 0.005275 0.003745 0.005110
Group A3 0.006657 0.007922 0.003068

TABLE 4. Amplitude of wave components |a1,0|/d, |a0,1|/d and |a2,−1|/d for (4.1) when
ε = 1.0003, k2d = 3π/5 and k2/k1 = 0.913835 (corresponding to resonance state A).
Group A1, A0 = −0.061834, B0 = 0.043603, C0 = −0.0866169 and c0 = −0.98; group A2,
A0 = −0.0616515, B0 = −0.0582749, C0 = −0.0435411 and c0 = −1; group A3, A0 =
−0.0616228, B0 = 0.115536, C0 =−0.0326345 and c0 =−1.15.

Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group A1 13.72 10.48 75.64 99.84
Group A2 40.43 20.38 37.93 98.74
Group A3 37.80 53.54 8.03 99.37

TABLE 5. Wave energy distribution for different groups of steady-state fully resonant wave
systems for (4.1) when ε = 1.0003, k2d = 3π/5 and k2/k1 = 0.913835 (corresponding to
resonance state A).

listed in table 4. The wave energy distributions for the three groups of waves are given
in table 5, where Π0 denotes the sum of wave energy of the two primary and one
resonant wave components, and Π is the total wave energy of the entire wave system,
defined by

Π0 = a2
1,0 + a2

0,1 + a2
2,−1, Π =

+∞∑
m=0

+∞∑
n=−∞

a2
m,n, (4.12)

respectively.
Now we immediately obtain the solutions of the three groups of the steady-state

fully resonant waves for (4.1) with ε = 1.0003 and k2d = 3π/5 for resonance state A.
It is found that the two primary and one resonant wave components as a whole contain
∼99 % of the wave energy, and thus all other wave components are negligible. Note
that the resonant wave amplitude a2,−1 is of the same order as that of the two primary
ones, i.e.

O(a2,−1)= O(a0,1)= O(a1,0), (4.13)

as shown in table 4. This agrees well with the conclusions given by Benney (1962).
Note that the steady-state resonant wave in group A1 contains the largest proportion
(75.64 %) of the wave energy. However, the resonant wave component does not always
contain the largest proportion of the wave energy for a steady-state wave system: for
example, the resonant wave in group A2 contains only 37.93 % of the wave energy,
which is a little less than that of one of the primary ones (40.43 %) but greater than
that of the other (20.38 %). In particular, the resonant wave in group A3 contains the
smallest proportion (8.03 %) of the wave energy, which is much less than those of
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Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 13.71 10.48 75.64 99.84
7π/10 12.76 10.71 76.29 99.76
4π/5 12.03 10.93 76.75 99.71
9π/10 11.57 11.12 77.01 99.70
π 11.32 11.28 77.11 99.71
13π/10 11.12 11.62 77.02 99.76
3π/2 11.11 11.75 76.91 99.77
17π/10 11.11 11.84 76.82 99.77
21π/10 11.09 11.97 76.71 99.77
3π 11.00 12.14 76.62 99.76
33π/10 10.98 13.2 76.61 99.76
∞ 10.88 12.29 76.58 99.76

TABLE 6. Wave energy distribution for group A1 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state A in table 1.

Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 40.43 20.38 37.94 98.74
7π/10 39.77 19.47 38.95 98.19
4π/5 39.37 18.84 39.62 97.83
9π/10 39.27 18.50 39.97 97.74
π 39.36 18.38 40.10 97.83
13π/10 39.74 18.44 40.00 98.18
3π/2 39.88 18.51 39.88 98.27
17π/10 39.95 18.55 39.80 98.30
21π/10 40.04 18.58 39.70 98.31
3π 40.12 18.57 39.61 98.30
33π/10 40.14 18.57 39.59 98.30
∞ 40.17 18.54 39.56 98.27

TABLE 7. Wave energy distribution for group A2 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state A in table 1.

the two primary ones (37.8 % and 53.54 %), as shown in table 5. Therefore, steady-
state resonant waves also exist in finite water depth, and, further, the resonant wave
components can contain only a small proportion of the total wave energy. So, the
conclusions given by Liao (2011) for steady-state fully resonant waves in deep water
have general application.

Unlike Liao (2011), we consider in this article the steady-state resonant waves in
finite water depth. So, the effect of water depth is studied here in detail. It is found
that, in resonance state A, there always exist three different groups of steady-state
fully resonant waves in different water depths, called group Ai (i = 1, 2, 3). The wave
energy distributions of the two primary and one resonant components of the three
groups in different water depths are shown in figure 4 and tables 6–8. It is found that
the resonant wave component in group A1 always contains the largest proportion of
the wave energy, but that of group A3 always contains the smallest ones.
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FIGURE 4. (Colour online) Wave energy distribution for (4.1) with ε = 1.0003 and various
k2d for resonance state A in table 1. (a) Group A1, (b) group A2, (c) group A3. Dash-dotted
line, a2

1,0/Π (first primary wave); dashed line, a2
0,1/Π (second primary wave); solid line,

a2
2,−1/Π (resonant wave).
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Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 37.80 53.54 8.03 99.37
7π/10 39.49 51.99 7.46 98.94
4π/5 40.66 50.85 7.07 98.58
9π/10 41.26 50.27 6.94 98.47
π 41.44 50.12 6.98 98.54
13π/10 41.18 50.37 7.25 98.80
3π/2 40.92 50.59 7.36 98.87
17π/10 40.72 50.74 7.42 98.88
21π/10 40.45 50.93 7.49 98.88
3π 40.16 51.11 7.59 98.86
33π/10 40.10 51.14 7.61 98.85
∞ 39.97 51.19 7.65 98.82

TABLE 8. Wave energy distribution for group A3 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state A in table 1.

Based on our above-mentioned results, in resonance state A listed in table 1 there do
indeed always exist multiple steady-state fully resonant waves in water of finite depth.
Moreover, the amplitude of the resonant wave component is of the same order as those
of the two primary ones, and the two primary and one resonant wave components as a
whole contain nearly 99 % of the wave energy. Furthermore, for steady-state resonant
waves in finite water depth, the resonant wave component can contain a much smaller
proportion of the wave energy than the primary ones. Note that the same conclusions
were reported by Liao (2011) for steady-state fully resonant waves in deep water. So,
in this subsection, we further verify that Liao’s conclusions still hold in finite water
depth for resonance state A and thus have general application.

4.2. Steady-state fully resonant waves in resonance state B
As shown in table 1, when Phillips’ resonance criterion is exactly satisfied, there
exist three steady-state resonance states for (4.1) with ε = 1.0003 but different k2d:
k2/k1 < 1 for resonance state A, 1< k2/k1 < 2 for resonance state B and k2/k1 > 2 for
resonance state C. Note that resonance states B and C were neglected by Liao (2011)
for steady-state fully resonant waves in deep water. In this subsection, we focus on
resonance state B.

Similarly, we first take k2d = 3π/5 as an example of resonance state B. The analytic
approach is exactly the same as that described in § 4.1, and is thus omitted here. To
avoid the secular terms, we have a set of the nonlinear algebra equations

−0.003107+ 0.0859796A2
0 + 0.245246B2

0 + 0.172718B0C0 + 0.11889C2
0 = 0, (4.14)

−0.0035285+ 0.1951A2
0 + 0.13869B2

0 + 0.0673168A2
0C0/B0 + 0.13566C2

0 = 0, (4.15)

0.1078A2
0B0 − 0.002713C0 + 0.151046A2

0C0 + 0.21599B2
0C0 + 0.0519C3

0 = 0, (4.16)

which have 12 solutions with real values. As listed in table 9, they can be divided into
three groups, denoted by groups B1, B2 and B3, respectively, and each group contains
four different solutions but the same values of |A0|, |B0| and |C0|.

Again, choosing an optimal convergent-control parameter c0, we obtain the
convergent analytic approximations for groups B1, B2 and B3, as shown in table 10.
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A0 B0 C0

Group B1
−0.0847735 0.0431112 −0.165801
−0.0847735 −0.0431112 0.165801

0.0847735 0.0431112 −0.165801
0.0847735 −0.0431112 0.165801

Group B2
−0.0850092 −0.057744 −0.0837223
−0.0850092 0.057744 0.0837223

0.0850092 −0.057744 −0.0837223
0.0850092 0.057744 0.0837223

Group B3
−0.0855548 0.115225 −0.0622215
−0.0855548 −0.115225 0.0622215

0.0855548 0.115225 −0.0622215
0.0855548 −0.115225 0.0622215

TABLE 9. Solutions of A0,B0,C0 of the nonlinear algebraic equations (4.14)–(4.16) for
(4.1) when ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165 (corresponding to resonance
state B). The values of A0,B0 and C0 are obtained by means of k2 = π/5 (m−1) and
d = 3 (m).

Amplitude of wave components
(Primary wave) (Primary wave) (Resonant wave)
|a1,0|/d |a0,1|/d |a2,−1|/d

Group B1 0.007858 0.0038778 0.009394
Group B2 0.006488 0.0060748 0.004662
Group B3 0.004382 0.010358 0.003832

TABLE 10. Convergent amplitude (|a1,0|/d, |a0,1|/d and |a2,−1|/d) of some wave
components for (4.1) when ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165 (corresponding
to resonance state B).

Thus, for (4.1) with ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165 (corresponding to
resonance state B), there also exist three steady-state fully resonant waves which have
no exchange of wave energy between different wave modes, so the wave spectrum
is independent of time. Further, the resonant wave component may also contain a
much smaller proportion of the wave energy than that of the primary ones, as shown
in table 11 (see groups B2 and B3). This confirms our conclusions described in
§ 4.1 concerning steady-state fully resonant waves for resonance state A. Note that,
unlike resonance state A in § 4.1, the resonant component in group B1 shares only
53.45 % of the wave energy of the entire wave system, while the counterpart in
§ 4.1 for group A1 has a much larger proportion, i.e. 75.64 %. In addition, one
primary wave in group B3 contains 76.05 % of the wave energy, which is larger
than the counterpart (53.54 %) in § 4.1 for group A3. In particular, the resonant wave
component in groups B2 and B3 contains a smaller proportion of the wave energy
than that of the two primary ones. Obviously, the steady-state fully resonant waves
for resonance state B are quantitatively different from those for resonance state A.
However, qualitatively speaking, they yield the same conclusion: there exist multiple
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Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group B1 37.37 9.07 53.45 99.89
Group B2 41.67 36.53 21.51 99.72
Group B3 13.51 76.05 10.40 99.95

TABLE 11. Wave energy distribution of the three steady-state fully resonant waves for (4.1)
when ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165 (corresponding to resonance state B).

Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 37.37 9.07 53.45 99.89
7π/10 38.01 8.64 53.16 99.82
4π/5 39.32 8.36 52.05 99.73
9π/10 40.45 8.16 51.05 99.66
π 41.35 8.04 50.22 99.61
13π/5 42.89 8.06 48.71 99.66
3π/2 43.26 8.15 48.30 99.71
17π/10 43.32 8.23 48.18 99.73
21π/10 43.08 8.35 48.32 99.75
3π 42.57 8.47 48.70 99.75
33π/10 42.48 8.50 48.77 99.75
∞ 42.19 8.58 48.98 99.75

TABLE 12. Wave energy distribution for group B1 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state B in table 1.

steady-state fully resonant waves whose resonant wave component can contain only a
small proportion of the wave energy.

The wave energy distributions of three steady-state fully resonant waves in different
water depth d are as shown in figure 5 and in tables 12–14, where group Bi
(i = 1, 2, 3) denotes the ith group of steady-state fully resonant waves in various
water depths for resonance state B. It is found that there always exist three steady-state
fully resonant waves, and that the resonant wave component may also contain much
less wave energy than the primary ones. This confirms that our conclusions given in
§ 4.1 for resonance state A have general application.

4.3. Steady-state fully resonant waves in resonance state C
Let us further consider the steady-state fully resonant waves for (4.1) with ε = 1.0003,
k2d = 3π/5 and k2/k1 = 2.173797, corresponding to resonance state C in figure 1.

Similarly, to avoid the secular terms, we have a set of nonlinear algebraic equations
in the three unknown coefficients of the initial guess (3.34):

−0.118972+ 0.252909A2
0 + 9.45119B2

0 + 0.51183B0C0 − 0.00520192C2
0 = 0, (4.17)

−0.352853+ 1.19945A2
0 + 13.869B2

0 + 0.037475A2
0C0/B0 − 0.039547C2

0 = 0, (4.18)

1.9347A2
0B0 − 0.009184C0 + 0.05405A2

0C0

+ 0.7807B2
0C0 − 5.378× 10−4C3

0 = 0. (4.19)



400 D. Xu, Z. Lin, S. Liao and M. Stiassnie

0

20

10

40

30

60

50

1.5 2.5 3.5 4.53.02.0 4.0 5.0

1.5 2.5 3.5 4.53.02.0 4.0 5.0
15

20

25

30

35

40

45

1.5 2.5 3.5 4.53.02.0 4.0 5.0
0

20

40

60

80

(a)

(b)

(c)

FIGURE 5. (Colour online) Wave energy distribution for (4.1) with ε = 1.0003 and various
k2d for resonance state B in table 1. (a) Group B1, (b) group B2, (c) group B3. Dash-dotted
line, a2

1,0/Π (first primary wave); dashed line, a2
0,1/Π (second primary wave); solid line,

a2
2,−1/Π (resonant wave).
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Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 41.67 36.53 21.51 99.71
7π/10 41.27 37.65 20.65 99.57
4π/5 40.93 38.53 19.95 99.41
9π/10 40.68 39.22 19.39 99.29
π 40.55 39.74 18.94 99.23
13π/10 40.67 40.47 18.18 99.32
3π/2 40.84 40.58 17.99 99.41
17π/10 40.98 40.57 17.91 99.46
21π/10 41.15 40.45 17.90 99.50
3π 41.30 40.27 17.93 99.50
33π/10 41.33 40.24 17.93 99.50
∞ 41.41 40.16 17.93 99.50

TABLE 13. Wave energy distribution for group B2 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state B in table 1.

Proportion of wave energy Sum
k2d (Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

3π/5 13.50 76.05 10.40 99.95
7π/10 12.59 76.57 10.78 99.94
4π/5 11.78 77.06 11.08 99.92
9π/10 11.02 77.52 11.37 99.91
π 10.34 77.91 11.66 99.91
13π/10 8.90 78.62 12.40 99.92
3π/2 8.39 78.78 12.76 99.93
17π/10 8.11 78.82 13.00 99.93
21π/10 7.92 78.73 13.29 99.94
3π 7.81 78.55 13.58 99.94
33π/10 7.77 78.53 13.64 99.94
∞ 7.69 78.44 13.81 99.94

TABLE 14. Wave energy distribution for group B3 for (4.1) with ε = 1.0003 and various
k2d. The corresponding values of k2/k1 are given in resonance state B in table 1.

The above equations have eight different solutions with real values. They can be
divided into two groups (called groups C1 and C2), each containing four different
solutions with the same values of |A0|, |B0| and |C0|, as listed in table 15.

However, using the same HAM-based approach, we cannot obtain convergent
analytic approximations by means of these values of A0,B0 and C0 in groups C1
and C2, mainly because there does not exist a so-called convergence-control parameter
c0 such that the convergence of the approximation series can be guaranteed. This is
quite different from resonance states A and B, in which it is easy to find the optimal
convergence-control parameter c0 to obtain convergent approximations, as shown for
example in figures 2 and 3.

Note that the existence of steady-state fully resonant waves is merely assumed, and
our strategy is first to make this assumption and then to prove that the corresponding
steady-state fully resonant waves do indeed exist in some cases. If no such steady-state
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A0 B0 C0

Group C1
−0.586361 −0.0596741 −5.92466
−0.586361 0.0596741 5.92466

0.586361 −0.0596741 −5.92466
0.586361 0.0596741 5.92466

Group C2
−0.327547 0.174807 −1.97472
−0.327547 −0.174807 1.97472

0.327547 0.174807 −1.97472
0.327547 −0.174807 1.97472

TABLE 15. Solutions of the nonlinear algebraic equations (4.17)–(4.19) for (4.1) with
ε = 1.0003, k2d = 3π/5 and k2/k1 = 2.173797, corresponding to resonance state C in
figure 1. The values of A0,B0 and C0 are obtained by means of k2 = π/5 (m−1) and
d = 3 (m).

solutions can be found, this indicates that the assumption is wrong, that is, no steady-
state fully resonant waves can exist. Therefore, steady-state fully resonant waves do
not exist for (4.1) with ε = 1.0003, k2d = 3π/5 and k2/k1 = 2.173797, corresponding
to resonance state C in figure 1.

In summary, for (4.1) with ε = 1.0003 and k2d = 3π/5, there exist three resonance
states with k2/k1 = 0.913835 (resonance state A), k2/k1 = 1.11165 (resonance state B)
and k2/k1 = 2.173797 (resonance state C), respectively, as shown in figure 1 and
table 1. Using the HAM-based analytic approach, it is found that, in resonance states
A and B, there exist multiple steady-state fully resonant waves and, further, the
resonant wave component can contain only a small proportion of the wave energy.
However, in resonance state C, such steady-state fully resonant waves do not exist.
These conclusions hold for various water depths including deep water. Note that using
the famous Zakharov equation we can obtain the same conclusions qualitatively, as
shown in appendix B.

5. Steady-state fully resonant waves with different angles between primary
waves

As mentioned above, when the angle between the two primary waves is π/36,
there exist multiple steady-state fully resonant waves and, moreover, the resonant wave
component can contain only a small proportion of the wave energy, as shown in § 4.1
for resonance state A (k2/k1 < 1) and in § 4.2 for resonance state B (1 < k2/k1 < 2).
However, no steady-state fully resonant waves are found for resonance state C, as
shown in § 4.3. Here, we further illustrate that the these conclusions still hold for some
other angles between the two primary waves, and thus have general application.

Without loss of generality, we still consider the case

σ1

ω1
= σ2

ω2
= 1.0003, α1 = 0, k2d = 3π/5, (5.1)

as an example. One primary wave propagates in the x direction (i.e. α1 = 0) with
unknown magnitude k1, i.e. k1 = k1i. The other has wavenumber k2 with known
magnitude but unknown angle α2. Without loss of generality, we consider two cases,
α2 = π/60 and α2 = 2π/45.
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Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group A1 10.85 9.76 77.39 98.00
Group A2 35.06 11.71 41.55 88.32
Group A3 43.76 43.63 3.14 90.53

TABLE 16. Wave energy distribution of steady-state fully resonant waves when α1 = 0,
α2 = π/60, ε = 1.0003, k2d = 3π/5 and k2/k1 = 0.946172 (resonance state A).

Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group B1 39.62 6.38 50.88 96.88
Group B2 38.52 39.08 17.30 94.90
Group B3 13.84 75.53 9.91 99.28

TABLE 17. Wave energy distribution of steady-state fully resonant waves when α1 = 0,
α2 = π/60, ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.06268 (resonance state B).

5.1. Steady-state fully resonant waves for α2 = π/60

Substituting

α1 = 0, α2 = π60
, k2d = 3π

5
(5.2)

into the nonlinear algebraic equation (4.2) gives three steady-state resonance states
k2/k1 = 0.946172, 1.06268, 2.205672, corresponding to resonance states A, B and C,
as in figure 1. Similarly, it is found that, for k2/k1 = 0.946172 (resonance state A) and
k2/k1 = 1.06268 (resonance state B), there exist three steady-state fully resonant waves
and, moreover, the resonant wave component can contain only a small proportion of
the wave energy, as shown in tables 16 and 17. However, when k2/k1 = 2.205672
(corresponding to resonance state C), no steady-state fully resonant waves can be
found. All these results further confirm the generalization of our conclusions in § 4.

5.2. Resonant waves for α2 = 2π/45

In this case, there also exist three steady-state resonance states, corresponding to
k2/k1 = 0.869372 (resonance state A), 1.20261 (resonance state B) and 2.090427
(resonance state C), respectively. Similarly, in resonance states A and B, it is found
that there also exist three steady-state fully resonant waves and that the resonant wave
component may contain only a small proportion of the wave energy, as shown in
tables 18 and 19, respectively. In particular, in resonance state B, the resonant wave
component never contains the highest proportion of the wave energy, as shown in
table 19, that is, the amplitude of the resonant wave component is always less than
that of one of the primary ones: this is an extreme example to verify our conclusion
that there exist multiple steady-state fully resonant waves in some cases, and that the
resonant wave component may contain only a small proportion of the wave energy.
However, no steady-state fully resonant waves are found for resonance state C. This
once again confirms the generalization of our conclusions in § 4.
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Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group A1 9.01 11.65 79.30 99.96
Group A2 41.41 18.94 39.45 99.80
Group A3 41.76 49.47 8.69 99.92

TABLE 18. Wave energy distribution of three steady-state fully resonant waves when
α1 = 0, α2 = 2π/45, ε = 1.0003, and k2d = 3π/5 and k2/k1 = 0.869372 (corresponding to
resonance state A).

Distribution of wave energy Sum
(Primary wave) (Primary wave) (Resonant wave)

a2
1,0/Π (%) a2

0,1/Π (%) a2
2,−1/Π (%) Π0/Π (%)

Group B1 56.15 10.11 33.71 99.97
Group B2 41.76 40.33 17.87 99.96
Group B3 3.80 84.61 11.57 99.98

TABLE 19. Wave energy distribution of three steady-state fully resonant waves when
α1 = 0, α2 = 2π/45, ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.20261 (corresponding to
resonance state B).

This verifies that our conclusions given in §§ 4.1 and 4.2 have general application.
Thus, when Phillips’ resonance criterion (3.32) in finite water depth is exactly satisfied,
there may indeed exist, in some cases, multiple steady-state fully resonant waves
which have no exchange of wave energy, so that the corresponding wave spectrum
is independent of time. Moreover, the resonant wave component may contain only a
small proportion of the wave energy in some cases. However, such steady-state fully
resonant waves do not always exist: for example, no steady-state fully resonant waves
are found for resonance state C investigated in this article.

Physically speaking, such steady-state fully resonant progressive waves do exist in
some cases, corresponding to a time-independent energy spectrum. However, even in
these cases, there usually exist time-dependent periodic exchanges of wave energy
governed by Jacobian elliptic functions, around the time-independent energy spectrum
of a steady-state fully resonant wave, since it is hard to be exactly in such a balanced
state in practice. So, our conclusions reported in this article might deepen and enrich
understanding of the excellent work of Phillips (1960) and Benney (1962) on wave
resonance.

6. Conclusions and discussion
Phillips (1960) gave the wave resonance criterion in his pioneering work; it was then

re-derived by Longuet-Higgins (1962) using perturbation methods with the assumption
that the amplitudes of two primary waves are of the same order but amplitudes of
other wave components are much smaller. Phillips (1960) pointed out that, when the
resonance criterion is satisfied, the amplitude of the resonant wave component, if zero
initially, grows linearly with time t. However, the time t mentioned in Phillips’ above
conclusion must be small, otherwise the resonant wave component would contain most
of the wave energy and thus break.
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Benney (1962) established the evolution equations of wave mode amplitudes, and
demonstrated the well-known time-dependent periodic exchange of wave energy
governed by Jacobian elliptic functions, when Phillips’ resonance criterion is fully
or nearly satisfied. Mathematically speaking, the evolution equations of Benney
(1962) correspond to a nonlinear initial value problem. Physically speaking, the time-
dependent periodic exchange of wave energy leads to a time-dependent periodic energy
spectrum.

Liao (2011) first investigated the existence of steady-state fully resonant wave
systems in deep water when Phillips’ resonance criterion is exactly satisfied. Here,
the steady-state wave system consists of two progressive primary waves and all other
wave components are due to nonlinear interaction and, further, each wave component
has time-independent wavenumber, frequency and amplitude. Mathematically speaking,
this is a nonlinear boundary-value problem. By means of the homotopy analysis
method (HAM), Liao (2011) found, for the first time, that multiple steady-state fully
resonant waves do indeed exist in deep water in some cases and, moreover, that the
resonant wave component may contain only a small proportion of the wave energy.

To check the generalization of Liao’s above-mentioned conclusions for steady-state
fully resonant waves in deep water, we further investigate the existence of such
steady-state fully resonant wave systems in water of finite depth, consisting of two
progressive primary waves and all other components due to nonlinear interaction.
Using the HAM as an analytic tool for the corresponding nonlinear boundary-value
problem, it is found that such steady-state fully resonant waves in water of finite depth
also exist in some cases, which have no exchange of wave energy between different
wave components and thus a time-independent spectrum of energy, and further that
the resonant component may contain only a small proportion of the wave energy.
The same conclusions are obtained in various water depths by means of different
angles between the two primary waves. It should be emphasized that qualitatively
identical conclusions are obtained by using the famous Zakharov equation, as shown
in appendix B. All of these verify the generalization of our conclusions concerning
steady-state fully resonant waves. Further, it is worth mentioning that Madsen &
Fuhrman (2012) numerically solved the harmonic resonance of irregular waves in
water of finite depth, combined with a third-order perturbation approximation. Their
numerical results, based on a high-order Boussinesq-type formulation, show a bound
resonant wave field having constant amplitude in space, consistent with the steady-
state fully resonant waves reported in this paper, although they did not find multiple
steady-state resonance waves.

As reported in this article, in some cases (for example, all of resonance state C
investigated in this article) steady-state fully resonant waves do not exist, so there only
exist time-dependent periodic exchanges of wave energy as reported by Benney (1962).
However, in some cases, such as resonance states A and B considered in this article,
steady-state fully resonant waves do indeed exist with time-independent energy spectra.
But even in these cases there usually exist time-dependent periodic exchanges of wave
energy around a time-independent energy spectrum of a corresponding steady-state
fully resonant wave, since it is hard to be exactly in such a balanced state in practice.
This view might deepen our understanding of wave resonance and enrich the excellent
work of Phillips (1960) and Benney (1962).

Note that Phillips’ resonance criterion can be derived in the context of perturbation
theory by assuming that only amplitudes of two primary waves are of the same order
but others are at higher order of a small physical parameter. However, using the HAM
in this article, we do not need any such assumption: this is an advantage of the
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HAM over the perturbation approach. Further, the HAM provides a convenient way
to guarantee the convergence of approximations: this differentiates the HAM from all
other analytic techniques. It should be emphasized that the linear governing equation
and the bottom boundary conditions are automatically satisfied, and, moreover, the
averaged residual squares of the two boundary conditions on the free surface generally
decrease to the level of 10−15 and 10−17, respectively. So, from a mathematical
viewpoint, we are quite sure that the steady-state fully resonant waves obtained are
solutions of the nonlinear boundary-value problem governed by (2.1)–(2.4). Note that
all steady-state fully resonant waves are obtained by means of the same analytic
approach with the same code. So, if a resonant wave component with maximum
amplitude is acceptable, we have identical reasons to believe that the resonant wave
component with the smallest amplitude is acceptable too.

Our computations confirm that the resonant wave component is indeed of the
same order as the primary ones. This is consistent with experimental and numerical
results. Note that, in the context of perturbation theory, only the two primary waves
are assumed to be initially of the same order. This assumption of the perturbation
approach is correct only in the case of non-resonance. Restricted by this assumption,
perturbation results (usually at the third order of approximation) contain the so-called
secular terms when Phillips’ criterion is satisfied, so ‘the perturbation theory breaks
down due to singularities in the transfer functions’, as recently pointed out by
Madsen & Fuhrman (2012). Unlike the perturbation approach, the HAM is entirely
independent of any small/large physical parameters: it does not need to make any
assumptions about the amplitudes of wave components. Note that our analytic HAM-
based approach successfully avoids the so-called ‘secular terms’ or ‘singularities in
the transfer functions’ of perturbation methods, and provides the multiple solutions of
steady-state fully resonant waves for the first time. This illustrates the validity and
great potential of the HAM for complicated nonlinear problems.

Note that two progressive primary waves with small amplitudes are considered in
this paper, mainly because Phillips’ resonance criterion is given for waves with small
wave amplitude. Obviously, it would be very interesting to investigate steady-state
fully resonant wave systems consisting of two or more primary waves with large
wave amplitudes and all components due to nonlinear interaction. Further, it would be
valuable to investigate steady-state fully resonant waves between two layer flows, or in
periodically variable water depth, or with surface tension, and so on. In addition, the
stability of steady-state fully resonant waves should also be investigated in detail.
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Appendix A. Definitions of ∆φ
m,∆

η
m, Sm, S̄m and χm in (3.25) and (3.26)

Definitions of ∆φ
m,∆

η
m, Sm, and S̄m in (3.25) and (3.26) are given by

∆
φ

m−1 = σ 2
1 φ̄

2,0
m−1 + 2σ1σ2φ̄

1,1
m−1 + σ 2

2 φ̄
0,2
m−1 + gφ̄0,0

z,m−1

− 2
(
σ1Γm−1,1 + σ2Γm−1,2

)+Λm−1, (A 1)

∆
η

m−1 = ηm−1 − 1
g

[
(σ1φ̄

1,0
m−1 + σ2φ̄

0,1
m−1)− Γm−1,0
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, (A 2)

S̄n =
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(
ω2

1β
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2,0 + 2ω1ω2β

n−m,m
1,1 + ω2
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0,0

)
, (A 3)

Sn =
n−1∑
m=0

(
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1β
n−m,m
2,0 + 2ω1ω2β

n−m,m
1,1 + ω2
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n−m,m
0,2 + gγ n−m,m

0,0

)
, (A 4)

where

Γm,0 = k2
1

2
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n=0

φ̄1,0
n φ̄1,0

m−n + k1 · k2

m∑
n=0

φ̄1,0
n φ̄0,1

m−n

+ k2
2

2

m∑
n=0

φ̄0,1
n φ̄0,1

m−n +
1
2

m∑
n=0

φ̄0,0
z,n φ̄

0,0
z,m−n, (A 5a)

Γm,1 =
m∑

n=0

(
k2

1φ̄
1,0
n φ̄2,0

m−n + k2
2φ̄

0,1
n φ̄1,1

m−n + φ̄0,0
z,n φ̄

1,0
z,m−n

)
+ k1 · k2

m∑
n=0

(
φ̄1,0

n φ̄1,1
m−n + φ̄2,0

n φ̄0,1
m−n

)
, (A 5b)

Γm,2 =
m∑

n=0

(
k2

1φ̄
1,0
n φ̄1,1

m−n + k2
2φ̄

0,1
n φ̄0,2

m−n + φ̄0,0
z,n φ̄

0,1
z,m−n

)
+ k1 · k2

m∑
n=0

(
φ̄1,0

n φ̄0,2
m−n + φ̄0,1

n φ̄1,1
m−n

)
, (A 5c)

Γm,3 =
m∑

n=0

(
k2

1φ̄
1,0
n φ̄1,0

z,m−n + k2
2φ̄

0,1
n φ̄0,1

z,m−n + φ̄0,0
z,n φ̄

0,0
zz,m−n

)
+ k1 · k2

m∑
n=0

(
φ̄1,0

n φ̄0,1
z,m−n + φ̄0,1

n φ̄1,0
z,m−n

)
, (A 5d)

Λm =
m∑

n=0

(
k2

1φ̄
1,0
n Γm−n,1 + k2

2φ̄
0,1
n Γm−n,2 + φ̄0,0

z,nΓm−n,3

)
+ k1 · k2

m∑
n=0

(
φ̄1,0

n Γm−n,2 + φ̄0,1
n Γm−n,1

)
, (A 5e)
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with the definitions

µ1,n = ηn, n > 1, (A 6)

µm,n =
n−1∑

i=m−1

µm−1,iηn−i, m > 2, n > m, (A 7)

ψn,m
i, j =

∂ i+j

∂ξ i
1∂ξ

j
2

(
1
m!
∂mφn

∂zm

∣∣∣∣
z=0

)
, (A 8)

βn,0
i, j = ψn,0

i, j , (A 9)

βn,m
i, j =

m∑
s=1

ψn,s
i, jµs,m m > 1, (A 10)

γ n,0
i, j = ψn,1

i, j , (A 11)

γ n,m
i, j =

m∑
s=1

(s+ 1)ψn,s+1
i, j µs,m m > 1, (A 12)

δn,0
i, j = 2ψn,2

i, j , (A 13)

δn,m
i, j =

m∑
s=1

(s+ 1)(s+ 2)ψn,s+2
i, j µs,m m > 1, (A 14)

φ̄i, j
n =

n∑
m=0

βn−m,m
i, j , (A 15)

φ̄i, j
z,n =

n∑
m=0

γ n−m,m
i, j , (A 16)

φ̄i, j
zz,n =

n∑
m=0

δn−m,m
i, j . (A 17)

For details, refer to Liao (2011, 2012).

Appendix B. Steady-state fully resonating quartet given by Zakharov’s
equation

A linearly resonating quartet, with wavenumbers kj and frequencies ωj, where kj

and ωj, j = 1, 2, 3, 4, are related by the linear dispersion relation ω2
j = gkj tanh(kjd),

satisfies the equations

k1 + k2 = k3 + k4, ω1 + ω2 = ω3 + ω4. (B 1)

Due to weak nonlinear effects, the actual frequencies of the waves, σj, are slightly
different from ωj, and also depend on the wave amplitudes. These changes are
sometimes called Stokes’ corrections. A fully resonating quartet is defined here as
one that satisfies (B 1), as well as

σ1 + σ2 = σ3 + σ4. (B 2)

Here we use Zakharov’s equation to show that the amplitudes of fully resonating
quartets can indeed be time-independent in some cases.
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Zakharov (1968) assumed that the wave field can be divided into free and bound
components. For the special resonant quartet

2k1 − k2 = k3, (B 3)
2ω1 − ω2 = ω3, (B 4)

the free components

B̃(k, t)= B1(t)δ(k− k1)+ B2(t)δ(k− k2)+ B3(t)δ(k− k3) (B 5)

are governed by a discrete form of the Zakharov equation,

i
dB1

dt
= (T1,1,1,1 |B1|2+2T1,2,1,2 |B2|2+2T1,3,1,3 |B3|2)B1 + 2T1,1,2,3B∗1B2B3ei1ωt, (B 6)

i
dB2

dt
= (2T2,1,2,1 |B1|2+T2,2,2,2 |B2|2+2T2,3,2,3 |B3|2)B2 + T2,3,1,1B∗3B2

1e−i1ωt, (B 7)

i
dB3

dt
= (2T3,1,3,1 |B1|2+2T3,2,3,2 |B2|2+T3,3,3,3 |B3|2)B3 + T3,2,1,1B∗2B2

1e−i1ωt, (B 8)

derived by Stiassnie & Shemer (1984), where

1ω = 2ω1 − ω2 − ω3, (B 9)

i = √−1 is the imaginary unit and Ta,b,c,d is the kernel given in chapter 14 in
Mei, Stiassnie & Yue (2005). Here, we use the formulas of Ta,a,a,a and Ta,b,a,b

derived by Stiassnie & Gramstad (2009). The authors would like to thank Dr Odin
Gramstad for his correction of the misprint in (4.10) given by Stiassnie & Gramstad
(2009) during the private discussion. The expression of T (S)a,a,a,a which we actually use
in this paper is T (S)a,a,a,a = −g/(16π2(gd − Cg2

a)){4k2
a[1 + (Cga/kaωa)(k2

a − (ω4
a/g

2))] +
(k2

a − (ω4
a/g

2))
2
(gd/ω2

a)}.
Assume that steady-state fully resonant waves exist. We search for the corresponding

solution of Bj(t) in the form

Bj(t)= bje−iΩjt, j= 1, 2, 3, (B 10)

where Ωj = σj − ωj is a real constant, and

bj = |bj|ei arg bj, j= 1, 2, 3, (B 11)

where arg bj denotes the argument of bj.
Substituting (B 5) and (B 10) into the wave elevation

η = 1
2π

∫ ∞
−∞

(
ω(k)
2g

)1/2

{B̃(k, t)ei[k·x−ω(k)t] + ∗} dk (B 12)

gives the steady-state resonant wave elevation

η =
3∑

j=1

aj cos(kj · x− σjt + arg bj), (B 13)

where

aj =
(
ωj

2g

)1/2 |bj|
π
, j= 1, 2, 3, (B 14)
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are constants independent of time. Note that, for the fully resonating special quartet
(B 4), we have

2Ω1 −Ω2 =Ω3, (B 15)

and thus

Ωj = (ε − 1)ωj, j= 1, 2, 3; see (4.1). (B 16)

Substituting (B 10) and (B 15) into (B 6)–(B 8), we have the set of nonlinear algebraic
equations

Ω1 = T1,1,1,1 |b1|2+2T1,2,1,2 |b2|2+2T1,3,1,3 |b3|2+2T1,1,2,3|b2||b3|e−iβ, (B 17)

Ω2 = 2T2,1,2,1 |b1|2+T2,2,2,2 |b2|2+2T2,3,2,3 |b3|2+T2,3,1,1
|b3| |b1|2
|b2| eiβ, (B 18)

Ω3 = 2T3,1,3,1 |b1|2+2T3,2,3,2 |b2|2+T3,3,3,3 |b3|2+T3,2,1,1
|b2| |b1|2
|b3| eiβ, (B 19)

where β = 2 arg b1 − arg b2 − arg b3. We must have eiβ = ±1 so that the value of |bj|
can be real. Instead of solving the algebraic equations (B 17)–(B 19), we can solve

Ω1 = T1,1,1,1x2 + 2T1,2,1,2y2 + 2T1,3,1,3z2 + 2T1,1,2,3yz, (B 20)

Ω2 = 2T2,1,2,1x2 + T2,2,2,2y2 + 2T2,3,2,3z2 + T2,3,1,1
zx2

y
, (B 21)

Ω3 = 2T3,1,3,1x2 + 2T3,2,3,2y2 + T3,3,3,3z2 + T3,2,1,1
yx2

z
, (B 22)

where x = ±|b1|, y = ±|b2|, z = ±|b3| must be real constants, with the restriction
yz < 0 corresponding to the case of eiβ = −1 and yz > 0 to eiβ = 1, respectively.
For (4.1) with ε = 1.0003, k2/k1 = 0.913835 and k2d = 3π/5, corresponding to
resonance state A in figure 1, the above nonlinear algebraic equations (B 20)–(B 22)
have 12 real solutions of x, y, z. They can be divided into three groups, called
groups ZA1, ZA2 and ZA3 as listed in table 20, and each group has the same
values of |x|, |y|, |z|, corresponding to |b1|, |b2|, |b3| in (B 17)–(B 19). Thus, the
corresponding wave elevation (B 13) is steady-state, i.e. each corresponding amplitude
aj is independent of time. This confirms that the steady-state solution expression (2.19)
for the HAM-based approach does indeed hold in some cases. Note that any Bj(t) in
each group has a time-independent norm |Bj(t)| and, moreover, |B3(t)| related to the
resonant wave component b3 may be the largest, the smallest and in the middle, as
shown in figure 6. These results qualitatively agree well with those obtained by the
HAM-based approach for the same case.

For (4.1) with ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165, corresponding to
resonance state B in figure 1, the nonlinear algebraic equations (B 20)–(B 22) also
have 12 real solutions. They can be divided into three groups, called groups ZB1, ZB2
and ZB3 as listed in table 21, respectively. Therefore, the corresponding fully resonant
waves are also steady-state, i.e. aj in (B 13) is independent of time so the solution
expression (2.19) for the HAM-based approach holds in this case too. Similarly, any
Bj(t) in each group has the same time-independent norm |Bj(t)|. It is found that |B3(t)|
in group ZB1 is the largest, but |B3(t)| in groups ZB2 and ZB3 are the smallest,
as shown in figure 7. These results qualitatively agree well with those given by the
HAM-based approach.
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FIGURE 6. (Colour online) Time-independent norm |Bj(t)| of (B 6)–(B 8) for (4.1) with ε =
1.0003, k2d = 3π/5 and k2/k1 = 0.913835. (a) Group ZA1, (b) group ZA2, (c) group ZA3.
Dash-dotted line, B1(t); dashed line, B2(t); solid line, B3(t).
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ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165. (a) Group ZB1, (b) group ZB2, (c) group ZB3.
Dash-dotted line, B1(t); dashed line, B2(t); solid line, B3(t).
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Solution
number

x y z

Group ZA1
1 −0.150906 −0.120227 0.29696
2 −0.150906 0.120227 −0.29696
3 0.150906 −0.120227 0.29696
4 0.150906 0.120227 −0.29696

Group ZA2
5 −0.176617 −0.135887 −0.151338
6 −0.176617 0.135887 0.151338
7 0.176617 −0.135887 −0.151338
8 0.176617 0.135887 0.151338

Group ZA3
9 −0.232949 −0.326529 0.122324
10 −0.232949 0.326529 −0.122324
11 0.232949 −0.326529 0.122324
12 0.232949 0.326529 −0.122324

TABLE 20. Real solutions of (B 20)–(B 22) for (4.1) with ε = 1.0003, k2d = 3π/5 and
k2/k1 = 0.913835, corresponding to resonance state A in figure 1. The values of x, y and z
are obtained by means of k2 = π/5 (m−1) and d = 3 (m).

Solution
number

x y z

Group ZB1
1 −0.361835 −0.190167 0.509642
2 −0.361835 0.190167 −0.509642
3 0.361835 −0.190167 0.509642
4 0.361835 0.190167 −0.509642

Group ZB2
5 −0.244212 −0.208006 −0.189132
6 −0.244212 0.208006 0.189132
7 0.244212 −0.208006 −0.189132
8 0.244212 0.208006 0.189132

Group ZB3
9 −0.212218 −0.424395 0.172923
10 −0.212218 0.424395 −0.172923
11 0.212218 −0.424395 0.172923
12 0.212218 0.424395 −0.172923

TABLE 21. Real solutions of (B 20)–(B 22) for (4.1) with ε = 1.0003, k2d = 3π/5 and
k2/k1 = 1.11165, corresponding to resonance state B in figure 1. The values of x, y and z
are obtained by means of k2 = π/5 (m−1) and d = 3 (m).

For (4.1) with ε = 1.0003 and k2d = 3π/5, there exist three steady-state fully
resonant waves for both resonance states A and B. Further, the resonant wave
component may contain only a small proportion of the wave energy, as shown in
tables 22 and 23, where Π̄0 =

∑3
i=1a2

i . All these results qualitatively agree well with
those given by the HAM-based approach described in §§ 4.1 and 4.2.
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Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZA1 18.16 11.52 70.32
Group ZA2 42.99 25.45 31.56
Group ZA3 30.86 60.63 8.51

TABLE 22. Wave energy distribution of steady-state fully resonant waves for (4.1) with
ε = 1.0003, k2d = 3π/5 and k2/k1 = 0.913835 (corresponding to resonance state A in
figure 1), obtained by Zakharov’s equation.

Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZB1 30.68 8.47 60.85
Group ZB2 43.01 31.20 25.79
Group ZB3 17.66 70.62 11.72

TABLE 23. Wave energy distribution of steady-state fully resonant waves for (4.1) with
ε = 1.0003, k2d = 3π/5 and k2/k1 = 1.11165 (corresponding to resonance state B in
figure 1), obtained by Zakharov’s equation.

However, as listed in table 24, there exist no real solutions of (B 20)–(B 22) for
(4.1) with ε = 1.0003, k2d = 3π/5 and k2/k1 = 2.173797, corresponding to resonance
state C in figure 1. So, in this case, real values of ±|bj| do not exist. In other
words, all wave amplitudes are dependent on time, so a steady-state solution formula
is impossible. Note that the steady-state solution expression (2.19) for the HAM-based
approach does not hold in this case either. Therefore, using Zakharov’s equation, we
obtain qualitatively identical conclusions to those given by the HAM-based approach
described in § 4.3.

Similarly, for (5.1) with α2 = π/60, Zakharov’s equation admits three steady-state
fully resonant waves when k2/k1 = 0.946172 and 1.06268, respectively, and the
resonant wave component can contain only a small proportion of the wave energy,
as shown in tables 25 and 26. However, no steady-state fully resonant waves are found
when k2/k1 = 2.205672.

Similarly, for (5.1) with α2 = 2π/45, Zakharov’s equation admits three steady-
state fully resonant waves when k2/k1 = 0.869372 and 1.20261, respectively, and the
resonant wave component can contain only a small proportion of the wave energy, as
shown in tables 27 and 28. However, no steady-state fully resonant waves are found
when k2/k1 = 2.090427.

In summary, using Zakharov’s equation, it is found that multiple steady-state fully
resonant waves exist in some cases and, moreover, the triad resonant wave component
may indeed contain only a small proportion of the wave energy. All these results given
by Zakharov’s equation qualitatively agree well with those given by the HAM-based
approach. This supports the validity and correctness of our conclusions based on the
fully nonlinear wave equations and the HAM.

Finally, it should be mentioned that, quantitatively speaking, there are differences in
the energy distribution between the results given by the fully nonlinear wave equation
and Zakharov’s equation. Such differences are probably due to the non-uniqueness of
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Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZA1 21.13 10.58 68.29
Group ZA2 42.91 26.80 30.29
Group ZA3 28.49 62.66 8.85

TABLE 25. Wave energy distribution of steady-state fully resonant waves for (5.1) with
α2 = π/60 and k2/k1 = 0.946172 (corresponding to resonance state A), obtained by
Zakharov’s equation.

Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZB1 28.45 8.83 62.72
Group ZB2 42.91 30.15 26.94
Group ZB3 21.03 68.34 10.63

TABLE 26. Wave energy distribution of steady-state fully resonant waves for (5.1)
with α2 = π/60 and k2/k1 = 1.06268 (corresponding to resonance state B), obtained by
Zakharov’s equation.

Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZA1 12.84 13.50 73.66
Group ZA2 43.12 23.09 33.79
Group ZA3 35.01 56.88 8.11

TABLE 27. Wave energy distribution of steady-state fully resonant waves for (5.1) with
α2 = 2π/45 and k2/k1 = 0.869372 (corresponding to resonance state A), obtained by
Zakharov’s equation.

Distribution of wave energy
Primary wave Primary wave Resonant wave

a2
1/Π̄0 (%) a2

2/Π̄0 (%) a2
3/Π̄0 (%)

Group ZB1 34.17 7.99 57.84
Group ZB2 43.15 33.17 23.68
Group ZB3 9.92 75.40 14.68

TABLE 28. Wave energy distribution of steady-state fully resonant waves for (5.1) with
α2 = 2π/45 and k2/k1 = 1.20261 (corresponding to resonance state B), obtained by
Zakharov’s equation.

the finite-depth water-wave problem: see Whitham (1962) and Davey & Stewartson
(1974). This non-uniqueness does not exist in infinitely deep water, for which the wave
amplitudes calculated by the HAM-based approach (Liao 2011) are nearly the same as
those calculated from Zakharov’s equation, as shown in table 29.
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Amplitudes of wave elevation
Primary wave Primary wave Resonant wave
|a1| |a2| |a3|

Case Z1 0.0200286 0.0248057 0.0102774
Group I 0.0205119 0.0232118 0.0089752
Case Z2 0.0160173 0.0112368 0.0144903
Group II 0.0147561 0.0100249 0.0146433
Case Z3 0.0105689 0.0105201 0.0256609
Group III 0.0097124 0.0103225 0.0257646

TABLE 29. Amplitudes of steady-state fully resonant waves in deep water with α2 = π/36
and k2/k1 = 0.8925. Cases Z1, Z2 and Z3 are obtained by Zakharov’s equation. Groups I,
II and III are given by table 9 in Liao (2011).
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