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We describe, very briefly, the basic ideas and current developments of the homotopy anal-
ysis method, an analytic approach to get convergent series solutions of strongly nonlinear
problems, which recently attracts interests of more and more researchers. Definitions of
some new concepts such as the homotopy-derivative, the convergence-control parameter
and so on, are given to redescribe the method more rigorously. Some lemmas and theorems
about the homotopy-derivative and the deformation equation are proved. Besides, a few
open questions are discussed, and a hypothesis is put forward for future studies.
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1. Introduction

Nonlinear equations are difficult to solve, especially analytically. Perturbation techniques [1–12] are widely applied in
science and engineering, and do great contribution to help us understand many nonlinear phenomena. However, it is well
known that perturbation methods are strongly dependent upon small/large physical parameters, and therefore are valid in
principle only for weakly nonlinear problems. The so-called non-perturbation techniques, such as the Lyapunov’s artificial
small parameter method [13], the d-expansion method [14,15], Adomian’s decomposition method [16–19], and so on, are
formally independent of small/large physical parameters. But, all of these traditional non-perturbation methods can not en-
sure the convergence of solution series: they are in fact only valid for weakly nonlinear problems, too.

The homotopy analysis method (HAM) [20–27] is a general analytic approach to get series solutions of various types of non-
linear equations, including algebraic equations, ordinary differential equations, partial differential equations, differential-inte-
gral equations, differential-difference equation, and coupled equations of them. Unlike perturbation methods, the HAM is
independent of small/large physical parameters, and thus is valid no matter whether a nonlinear problem contains small/large
physical parameters or not. More importantly, different from all perturbation and traditional non-perturbation methods, the
HAM provides us a simple way to ensure the convergence of solution series, and therefore, the HAM is valid even for strongly
nonlinear problems. Besides, different from all perturbation and previous non-perturbation methods, the HAM provides us
with great freedom to choose proper base functions to approximate a nonlinear problem [21,26]. Since Liao’s book [21] for
the homotopy analysis method was published in 2003, more and more researchers have been successfully applying this meth-
od to various nonlinear problems in science and engineering, such as the viscous flows of non-Newtonian fluids [28–38], the
KdV-type equations [39–43], nonlinear heat transfer [44–46], finance problems [47,48], Riemann problems related to nonlin-
ear shallow water equations [49], projectile motion [50], Glauert-jet flow [51], nonlinear water waves [52], groundwater flows
. All rights reserved.
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[53], Burgers–Huxley equation [54], time-dependent Emden–Fowler type equations [55], differential-difference equation [56],
Laplace equation with Dirichlet and Neumann boundary conditions [57], thermal–hydraulic networks [58], boundary layer
flows over a stretching surface with suction and injection [59], and so on. Especially, some new solutions of a few nonlinear
equations are reported [60,61]: these new solutions have never been reported by all other previous analytic methods and even
by numerical methods. This shows the great potential of the HAM for strongly nonlinear problems in science and engineering.

The HAM is based on homotopy, a fundamental concept in topology and differential geometry [62], which can be traced
back to Poincaré [63]. Briefly speaking, by means of the HAM, one constructs a continuous mapping of an initial guess approx-
imation to the exact solution of considered equations. An auxiliary linear operator is chosen to construct such kind of contin-
uous mapping, and an auxiliary parameter is used to ensure the convergence of solution series. The method enjoys great
freedom in choosing initial approximations and auxiliary linear operators. By means of this kind of freedom, a complicated
nonlinear problem can be transferred into an infinite number of simpler, linear sub-problems, as shown by Liao and Tan [26].

For example, let us consider a nonlinear algebraic equation
1 In t
f ðxÞ ¼ 0:
First of all, we construct such a homotopy:

H½x; q� ¼ ð1� qÞ f ðxÞ � f ðx0Þ½ � þ qf ðxÞ;
where x0 is an initial guess of x, and q 2 ½0;1� is called homotopy-parameter.1 Obviously, at q ¼ 0 and q ¼ 1, one has
H½x; 0� ¼ f ðxÞ � f ðx0Þ; H½x; 1� ¼ f ðxÞ;
respectively. Thus, as q increases from 0 to 1, H½x; q� varies continuously from f ðxÞ � f ðx0Þ to f ðxÞ. Such kind of continuous
variation is called deformation in topology [62]. Now, enforcing H½x; q� ¼ 0, i.e.
ð1� qÞ½f ðxÞ � f ðx0Þ� þ qf ðxÞ ¼ 0;
we have now a family of algebraic equations. Obviously, the solution of the above family of algebraic equations is dependent
upon the homotopy-parameter q. So, the family of equations can be rewritten as
ð1� qÞff ½/ðqÞ� � f ðx0Þg þ qf ½/ðqÞ� ¼ 0: ð1Þ
At q ¼ 0, it gives
f ½/ðqÞ� � f ðx0Þ ¼ 0; when q ¼ 0;
whose solution is obviously
/jq¼0 ¼ /ð0Þ ¼ x0:
At q ¼ 1, one has
f ½/ðqÞ� ¼ 0; when q ¼ 1:
It is exactly the same as the original algebraic equation f ðxÞ ¼ 0, thus
/jq¼1 ¼ /ð1Þ ¼ x:
Therefore, as the homotopy-parameter q increases from 0 to 1, /ðqÞ varies (or deforms) from the initial guess x0 to the
solution x of f ðxÞ ¼ 0. We call the family of equations like (1) the zeroth-order deformation equation (the more rigorous def-
inition will be given in the following section).

Because /ðqÞ is now a function of the homotopy-parameter q, we can expand it into Maclaurin series
/ðqÞ ¼ x0 þ
Xþ1
k¼1

xkqk; ð2Þ
where /ð0Þ ¼ x0 is employed, and
xk ¼
1
k!

ok/ðqÞ
oqk

�����
q¼0

¼ Dkð/Þ: ð3Þ
Here, the series (2) is called homotopy-series, Dkð/Þ is called the kth-order homotopy-derivative of / (more rigorous definitions
and some related theorems will be given in the following section). If the homotopy-series (2) is convergent at q ¼ 1, then
using the relationship /ð1Þ ¼ x, one has the so-called homotopy-series solution
x ¼ x0 þ
Xþ1
k¼1

xk: ð4Þ
Unfortunately, convergence radii of many Maclaurin series of functions are less than 1. So, here, we had to assume that the
homotopy-series is convergent at q ¼ 1. This restriction can be overcome by introducing an auxiliary parameter, as shown later.
he theory of topology, q is called the embedding parameter.
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According to the fundamental theorem of calculus about Taylor series, the coefficient xk of the homotopy-series (2) is un-
ique. Therefore, the governing equation of xk is unique, too, and can be deduced directly from the zeroth-order deformation
equation (1). Taking the 1st-order homotopy-derivative on both sides of the zeroth-order deformation equation (1) gives the
so-called 1st-order deformation equation:
2 Acc
q ¼ 0.
x1f 0ðx0Þ þ f ðx0Þ ¼ 0;
whose solution is
x1 ¼ �
f ðx0Þ
f 0ðx0Þ

:

Taking the 2nd-order homotopy-derivative2 on both sides of (1) gives the 2nd-order deformation equation:
x2f 0ðx0Þ þ
1
2

x2
1f 00ðx0Þ ¼ 0;
whose solution is
x2 ¼ �
x2

1f 00ðx0Þ
2f 0ðx0Þ

¼ � f 2ðx0Þf 00ðx0Þ
2½f 0ðx0Þ�3

:

In this way, one obtains xk one by one in the order k ¼ 1;2;3; . . .. Here, we emphasize that all of these high-order defor-
mation equations are linear, and therefore are easy to solve. Then, we have the 1st-order homotopy-series approximation
x �¼ x0 þ x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

ð5Þ
and the 2nd-order homotopy-series approximation
x � x0 þ x1 þ x2 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

� f 2ðx0Þf 00ðx0Þ
2½f 0ðx0Þ�3

: ð6Þ
Note that (5) is exactly the same as the famous Newton’s iteration formula, and thus (6) can be regarded as the 2nd-order
Newton’s iteration formula. In fact, one can give a family of Newton’s iteration formula in a similar way.

The above analytic approach is independent of any physical parameters at all: no matter whether a nonlinear problem
contains small/large physical parameters or not, one can always introduce the homotopy-parameter q 2 ½0;1� to construct
a zeroth-order deformation equation and then to get the homotopy-series solution. Unfortunately, the homotopy-series like
(2) is not always convergent at q ¼ 1, therefore the corresponding homotopy-series solution (4) might be divergent. For
example, it is well-known that Newton’s 1st-order iteration formula (5) often gives divergent results. This is mainly because
the above approach is based on such a assumption that the homotopy-series like (2) is convergent at q ¼ 1, but this assump-
tion does not hold in general, especially for nonlinear problems with strong nonlinearity. To overcome this restriction of the
early HAM, Liao [22] introduced an auxiliary parameter �h–0 to construct such a kind of zeroth-order deformation equation
ð1� qÞff ½/ðqÞ� � f ðx0Þg ¼ q�hf ½/ðqÞ�: ð7Þ
Since �h–0, the above equation at q ¼ 1 becomes
�hf ½/ðqÞ� ¼ 0; when q ¼ 1;
which is equivalent to the original equation f ðxÞ ¼ 0, provided x ¼ /ð1Þ. All other formulas like (2) and (4) are the same, ex-
cept the high-order deformation equation. Similarly, taking the 1st-order homotopy-derivative on both sides of (7), we have
the corresponding 1st-order deformation equation
x1f 0ðx0Þ � �hf ðx0Þ ¼ 0;
whose solution is
x1 ¼ �h
f ðx0Þ
f 0ðx0Þ

:

Taking the 2nd-order homotopy-derivative on both sides of (7) gives the 2nd-order deformation equation:
x2f 0ðx0Þ � ð1þ �hÞx1f 0ðx0Þ þ
1
2

x2
1f 00ðx0Þ ¼ 0;
whose solution is
x2 ¼ ð1þ �hÞx1f 0ðx0Þ �
x2

1f 00ðx0Þ
2f 0ðx0Þ

¼ �hð1þ �hÞf ðx0Þ �
f 2ðx0Þf 00ðx0Þ

2½f 0ðx0Þ�3
:

ording to the definition (3), we here differentiates the zeroth-order deformation equation (1) twice with respect to q, then divides by 2! and finally sets
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Similarly, one has the corresponding first-order homotopy-series approximation
x �¼ x0 þ x1 ¼ x0 þ �h
f ðx0Þ
f 0ðx0Þ

; ð8Þ
and the corresponding 2nd-order homotopy-series approximation
x � x0 þ x1 þ x2 ¼ ð1þ �hþ �h2Þx0 þ �h
f ðx0Þ
f 0ðx0Þ

� f 2ðx0Þf 00ðx0Þ
2½f 0ðx0Þ�3

: ð9Þ
Obviously, (5) and (6) are special cases of (8) and (9) when �h ¼ �1, respectively. The auxiliary-parameter �h in (5) can be
regarded as a iteration factor that is widely used in numerical computations. It is well known that a properly chosen iteration
factor can ensure the convergence of iteration. Similarly, it is found that the convergence of the homotopy-series like (2) is
dependent upon the value of �h: one can ensure the convergence of the homotopy-series solution simply by means of choos-
ing a proper value of �h, as shown by Liao [21–23,25,26,60] and others [28]-[59]. In fact, it is the auxiliary parameter �h that
provides us, for the first time, a simple way to ensure the convergence of series solution. Due to this reason, it seems rea-
sonable to rename �h the convergence-control parameter, which was suggested by Dr. Pradeep Siddheshwar in our private
discussions.

It should be emphasized that, without the use of the convergence-parameter �h, one had to assume that the homotopy-
series like (2) is convergent. However, with the use of the convergence-parameter �h, such an assumption is unnecessary,
because it seems that one can always choose a proper value of �h to obtain convergent homotopy-series solution. So, the
use of the convergence-parameter �h in the zeroth-order deformation equation greatly modifies the early homotopy analysis
method. Since then, the homotopy analysis method have been developing greatly, and more generalized zeroth-order
deformation equations are suggested by Liao [21,23,24,26]. Currently, some developments [64–66] of the HAM are
reported.

At the current stage of the HAM, it is urgently necessary to redescribe this method in a more rigorous way. So, in this
paper, definitions of some new concepts such as the homotopy-derivative, the convergence-control parameter, the conver-
gence-control vector, and so on, are given so as to redescribe the method more rigorously. Besides, some lemmas and the-
orems about the homotopy-derivative and the deformation equation are proved. Furthermore, a few open questions are
discussed, and a hypothesis is put forward for future studies. All of these can help the HAM users easily understand this
method, and simplify the applications of the HAM for new, complicated nonlinear problems in science and engineering.

2. Properties of homotopy-derivative

As mentioned in Section 1 the so-called homotopy-derivative is used to deduce the high-order deformation equation. Here,
we first give rigorous definitions and then prove some properties of the homotopy-derivative. These properties are useful to
deduce the high-order deformation equations.

Definition 2.1. Let / be a function of the homotopy-parameter q, then
Dmð/Þ ¼
1

m!

om/
oqm

����
q¼0

ð10Þ
is called the mth-order homotopy-derivative of /, where m P 0 is an integer.

Definition 2.2. Let N½u� ¼ 0 denote a nonlinear equation, / be a function of the homotopy-parameter q 2 ½0;1�, whose
Maclaurin series is
/ ¼
Xþ1
k¼0

ukqk: ð11Þ
The family of equations

P½/; q� ¼ 0; q 2 ½0;1�
is called the zeroth-order deformation equation of N½u� ¼ 0, if, at q ¼ 1, it is equivalent to the original equation N½u� ¼ 0 so
that
u ¼ /jq¼1 ¼
Xþ1
k¼0

uk; ð12Þ
and besides, its solution is obvious at q ¼ 0. The series (11) is called the homotopy-series, the series (12) is called homotopy-
series solution of N½u� ¼ 0, and the equations governing uk are called the kth-order deformation equations.

Molabahrami and Khani [54] proved the following theorem:
Molabahrami and Khani’s Theorem. For homotopy-series
/ ¼
Xþ1
i¼0

uiqi;
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it holds
Dmð/kÞ ¼
Xm

r1¼0

um�r1

Xr1

r2¼0

ur1�r2

Xr2

r3¼0

ur2�r3 � � �
Xrk�3

rk�2¼0

urk�3�rk�2

Xrk�2

rk�1¼0

urk�2�rk�1
urk�1

;

where m P 0 and k P 1 are positive integers.
For details, please refer to Molabahrami and Khani [54]. Here, we prove some other properties of the homotopy-

derivative.

Theorem 2.1. Let f and g be functions independent of the homotopy-parameter q. For homotopy-series
/ ¼
Xþ1
i¼0

uiqi; w ¼
Xþ1
j¼0

vjqj;
it holds
Dmðf/þ gwÞ ¼ fDmð/Þ þ gDmðwÞ:
Proof. Because f and g are independent of q, and besides Dm defined by (10) is a liner operator, it obviously holds
Dmðf/þ gwÞ ¼ Dmðf /Þ þ DmðgwÞ ¼ fDmð/Þ þ gDmðwÞ: �
Theorem 2.2. For homotopy-series
/ ¼
Xþ1
i¼0

uiqi; w ¼
Xþ1
j¼0

vjqj;
it holds
ðaÞ Dmð/Þ ¼ um;

ðbÞ Dmðqk/Þ ¼ Dm�kð/Þ;

ðcÞ Dmð/wÞ ¼
Xm

i¼0

Dið/ÞDm�iðwÞ ¼
Xm

i¼0

DiðwÞDm�ið/Þ;

ðdÞ Dmð/nwlÞ ¼
Xm

i¼0

Dið/nÞDm�iðwlÞ ¼
Xm

i¼0

DiðwlÞDm�ið/nÞ;
where m P 0, n P 0, l P 0 and 0 6 k 6 m are integers.

Proof. (A) According to Taylor theorem, the unique coefficient um of the Maclaurin series of / is given by
um ¼
1

m!

om/
oqm

����
q¼0
;

which gives (a) by means of the definition of Dmð/Þ.
(B) It holds
qk/ ¼ qk
Xþ1
i¼0

uiqi ¼
Xþ1
i¼0

uiqiþk ¼
Xþ1
m¼k

um�kqm;
which gives by means of (a) that
Dmðqk/Þ ¼ um�k ¼ Dm�kð/Þ:
(C) According to Leibnitz’s rule for derivatives of product, it holds
omð/wÞ
oqm

¼
Xm

i¼0

m!

i!ðm� iÞ!
oi/
oqi

om�iw
oqm�i

¼
Xm

i¼0

m!

i!ðm� iÞ!
oiw
oqi

om�i/
oqm�i

;

which gives by the definition (10):
Dmð/wÞ ¼ 1
m!

omð/wÞ
oqm

����
q¼0
¼
Xþ1
i¼0

1
i!

oi/
oqi

�����
q¼0

0
@

1
A 1
ðm� iÞ!

om�iw
oqm�i

�����
q¼0

0
@

1
A ¼Xþ1

i¼0

Dið/ÞDm�iðwÞ:
Similarly, it holds
Dmð/wÞ ¼
Xþ1
i¼0

DiðwÞDm�ið/Þ:
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(D) Write U ¼ /n and W ¼ wl. According to (c), it holds
Dmð/nwlÞ ¼ DmðUWÞ ¼
Xþ1
i¼0

DiðUÞDm�iðWÞ ¼
Xþ1
i¼0

Dið/nÞDm�iðwlÞ:
Similarly, it holds
Dmð/nwlÞ ¼
Xþ1
i¼0

DiðwlÞDm�ið/nÞ;
which ends the proof. h

Theorem 2.3. Let L be a linear operator independent of the homotopy-parameter q. For homotopy-series
/ ¼
Xþ1
k¼0

ukqk;
it holds
DmðL/Þ ¼L½Dmð/Þ�:
Proof. Since L is independent of q, it holds
L/ ¼
Xþ1
k¼0

LðukÞ½ �qk:
Taking mth-order homotopy-derivative on both sides of the above expression and using Theorem 2.1(a), one has
DmðL/Þ ¼LðumÞ. On the other side, according to Theorem 2.1(a), it holds obviously L½Dmð/Þ� ¼LðumÞ. Thus,
DmðL/Þ ¼L½Dmð/Þ� holds. h

Theorem 2.4. For homotopy-series
/ ¼
Xþ1
k¼0

ukqk;
it holds the recurrence formulas
D0 e/
� �

¼ eu0 ;

Dm e/
� �

¼
Xm�1

k¼0

1� k
m

� �
Dk e/
� �

Dm�kð/Þ;
where m P 1 is integer.

Proof. According to the definition (10) of the operator Dm, it holds obviously
D0ðe/Þ ¼ eu0 :
Besides, one has
oe/

oq
¼ e/ o/

oq
:

Thus, according to Leibnitz’s rule for derivatives of product, it holds
1
m!

ome/

oqm ¼
1

m!

om�1

oqm�1 e/ o/
oq

� �
¼ 1

m

Xm�1

k¼0

1
k!ðm� 1� kÞ!

oke/

oqk

om�k/
oqm�k

¼
Xm�1

k¼0

ðm� kÞ
m

1
k!

oke/

oqk

" #
1

ðm� kÞ!
om�k/
oqm�k

" #
:

Setting q ¼ 0 in above expression and using the definition (10), one has
Dmðe/Þ ¼
Xm�1

k¼0

1� k
m

� �
Dk e/
� �

Dm�kð/Þ;
where m P 1 is an integer. h

Theorem 2.5. For homotopy-series
/ ¼
Xþ1
k¼0

ukqk;
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it holds the recurrence formulas
D0ðsin /Þ ¼ sinðu0Þ; D0ðcos /Þ ¼ cosðu0Þ;

Dmðsin /Þ ¼
Xm�1

k¼0

1� k
m

� �
Dkðcos /ÞDm�kð/Þ;

Dmðcos /Þ ¼ �
Xm�1

k¼0

1� k
m

� �
Dkðsin /ÞDm�kð/Þ;
where m P 1 is an integer.

Proof. According to the definition (10), it holds obviously
D0ðsin /Þ ¼ sinðu0Þ; D0ðcos /Þ ¼ cosðu0Þ:
Write i ¼
ffiffiffiffiffiffiffi
�1
p

. Using Euler formula and Theorem 2.1, it holds for an integer m P 1 that
Dmðsin /Þ ¼ Dm
ei/ � e�i/

2i

� �
¼ 1

2i
Dmðei/Þ � Dmðe�i/Þ
� 	

ð13Þ
and
Dmðcos /Þ ¼ Dm
ei/ þ e�i/

2

� �
¼ 1

2
Dmðei/Þ þ Dmðe�i/Þ
� 	

: ð14Þ
Using Theorem 2.4 and then Theorem 2.1, we have
Dmðei/Þ ¼
Xm�1

k¼0

1� k
m

� �
Dkðei/ÞDm�kði/Þ ¼ i

Xm�1

k¼0

1� k
m

� �
Dkðei/ÞDm�kð/Þ
and similarly,
Dmðe�i/Þ ¼ �i
Xm�1

k¼0

1� k
m

� �
Dkðe�i/ÞDm�kð/Þ:
Substituting the above two expressions into (13) and (14), then using Theorem 2.1 and Euler formula, we have
Dmðsin /Þ ¼ 1
2

Xm�1

k¼0

1� k
m

� �
Dm�kð/Þ Dkðei/Þ þ Dkðe�i/Þ

� 	
¼
Xm�1

k¼0

1� k
m

� �
Dm�kð/ÞDk

ei/ þ e�i/

2

� �

¼
Xm�1

k¼0

1� k
m

� �
Dm�kð/ÞDkðcos /Þ;
and similarly
Dmðcos /Þ ¼ i
2

Xm�1

k¼0

1� k
m

� �
Dm�kð/Þ Dkðei/Þ � Dkðe�i/Þ

� 	
¼ �

Xm�1

k¼0

1� k
m

� �
Dm�kð/ÞDk

ei/ � e�i/

2i

� �

¼ �
Xm�1

k¼0

1� k
m

� �
Dm�kð/ÞDkðsin /Þ:
This ends the proof. h

Theorem 2.6. If the two homotopy-series
/ ¼
Xþ1
i¼0

uiqi; w ¼
Xþ1
j¼0

vjqj;
satisfy / ¼ w in a domain q 2 ½0; aÞ, then Dmð/Þ ¼ DmðwÞ and um ¼ vm for any integer m P 0 and a real number a > 0.

Proof. Since / ¼ w, it holds
Xþ1
k¼0

ðuk � vkÞqk ¼ 0:
The above expression holds for all points q 2 ½0; aÞ, if and only if
um ¼ vm; m P 0;
which gives, due to Theorem 2.2 (a), that
Dmð/Þ ¼ DmðwÞ: �



Remark 2.1. According to Theorem 2.5, taking the mth-order homotopy-derivative on the two sides of the equation / ¼ w

gives the same results as equating the like-power of q of the equation / ¼ w. Note that, here, it is unnecessary to regard q as
small parameter at all. From the above theorem, it is clear that the so-called ‘‘homotopy perturbation method” [67,68] (pro-
posed in 1998) is exactly a copy of the early homotopy analysis method (proposed in 1992) and is a special case of the late
homotopy analysis method in case of �h ¼ �1. For details, please refer to Abbasbandy [44], Hayat & Sajid [46,69].
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3. Deformation equations

In this section, the properties of homotopy-derivatives proved in Section 2 are employed to deduce the high-order defor-
mation equations for various types of zeroth-order deformation equations.

Lemma 3.1. Let
/ ¼
Xþ1
m¼0

umð~x; tÞqm
denote a homotopy-series, where q 2 ½0;1� is the homotopy-parameter, um is a function of the spatial variable~x and the temporal
variable t, respectively. Let L denote an auxiliary linear operator with respect to ~x and t, and u0 an guess solution. It holds
Dmfð1� qÞL½/� u0�g ¼L½umð~x; tÞ � vmum�1ð~x; tÞ�;
where the operator Dm�1 is defined by (10) and vm is defined by
vm ¼
0; m 6 1;
1; m > 1:



ð15Þ
Proof. Since L is a linear operator independent of q, it holds
ð1� qÞL½/� u0� ¼L½/� q/þ u0q� u0�:
Using Theorems 2.1, 2.2 and 2.3, we have
Dm ð1� qÞL½/� u0�f g ¼ DmfL½/� q/þ u0q� u0�g ¼LfDm½/� q/þ u0q� u0�g ¼L½Dmð/Þ � Dmðq/Þ þ u0DmðqÞ�
¼L½um � um�1 þ u0DmðqÞ�;
which equals to L½um�when m ¼ 1, and L½um � um�1�when m > 1, respectively. Thus, using the definition (15) of vm, it holds
Dmfð1� qÞL½/� u0�g ¼L½um � vmum�1�: �
Theorem 3.1. Write
/ ¼
Xþ1
m¼0

umð~x; tÞqm;
where q 2 ½0;1� is the homotopy-parameter. Let L denote an auxiliary linear operator, N a nonlinear operator, u0ð~x; tÞ a guess
solution, �h the convergence-control parameter independent of q, and Hð~x; tÞ an auxiliary function independent of q, respectively.
For the zeroth-order deformation equation defined by
ð1� qÞL½/� u0� ¼ q�hHð~x; tÞN½/�; ð16Þ
the corresponding mth-order deformation equation (m P 1) reads
L½umð~x; tÞ � vmum�1ð~x; tÞ� ¼ �hHð~x; tÞDm�1ðN½/�Þ; ð17Þ
where the operator Dm�1 is defined by (10) and vm is defined by (15).

Proof. Using Theorem 2.6, we have
Dmfð1� qÞL½/� u0�g ¼ Dmðq�hHð~x; tÞN½/�Þ: ð18Þ
According to Lemma 3.1, it holds
Dmfð1� qÞL½/� u0�g ¼L½um � vmum�1�: ð19Þ
According to Theorems 2.1 and 2.2, one has
Dmðq�hHð~x; tÞN½/�Þ ¼ �hHð~x; tÞDm�1ðN½/�Þ: ð20Þ
Substituting (19) and (20) into (18), one has the mth-order deformation equation
L½um � vmum�1� ¼ �hHð~x; tÞDm�1ðN½/�Þ: �
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Theorem 3.2. Write
/ ¼
Xþ1
m¼0

umð~x; tÞqm; w ¼
Xþ1
k¼1

akqk;
where q 2 ½0;1� is the homotopy-parameter and ak is a constant. Let L denote an auxiliary linear operator, N a nonlinear oper-
ator, u0ð~x; tÞ a guess solution, and Hð~x; tÞ an auxiliary function independent of q, respectively. For the zeroth-order deformation
equation defined by
ð1� qÞL½/� u0� ¼ Hð~x; tÞ
Xþ1
k¼1

akqk

 !
N½/�; ð21Þ
the corresponding mth-order deformation equation (m P 1) reads
L½umð~x; tÞ � vmum�1ð~x; tÞ� ¼ Hð~x; tÞ
Xm

k¼1

akDm�kðN½/�Þ; ð22Þ
where the operator Dk is defined by (10) and vm is defined by (15).

Proof. Using Theorem 2.6, we have
Dmfð1� qÞL½/� u0�g ¼ DmðHð~x; tÞwN½/�Þ: ð23Þ
According to Lemma 3.1, it holds
Dmfð1� qÞL½/� u0�g ¼L½um � vmum�1�: ð24Þ
Using Theorems 2.1 and 2.2, we have
DmðHð~x; tÞwN½/�Þ ¼ Hð~x; tÞ
Xm

k¼0

DkðwÞDm�kðN½/�Þ ¼ Hð~x; tÞ
Xm

k¼0

akDm�kðN½/�Þ;
which gives, since a0 ¼ 0,
DmðHð~x; tÞwN½/�Þ ¼ Hð~x; tÞ
Xm

k¼1

akDm�kðN½/�Þ: ð25Þ
Substituting (24) and (25) into (23) ends the proof. h

Remark 3.1. The zeroth-order deformation equation (16) is a special case of the zeroth-order deformation equation (21) in
case of a1 ¼ �h and ak ¼ 0 for k > 1.

Theorem 3.3. Write
/ ¼
Xþ1
m¼0

umð~x; tÞqm; w ¼
Xþ1
k¼1

bkð~x; tÞqk;
where q 2 ½0;1� is the homotopy-parameter, bkð~x; tÞ is either equal to zero or a non-zero function, but at least one of them is non-
zero. Let L denote an auxiliary linear operator, N a nonlinear operator, and u0ð~x; tÞ a guess solution, respectively. For the zeroth-
order deformation equation defined by
ð1� qÞL½/� u0� ¼
Xþ1
k¼1

bkð~x; tÞqk

 !
N½/�; ð26Þ
the corresponding mth-order deformation equation (m P 1) reads
L½umð~x; tÞ � vmum�1ð~x; tÞ� ¼
Xm

k¼1

bkð~x; tÞDm�kðN½/�Þ; ð27Þ
where the operator Dk is defined by (10) and vm is defined by (15).

Proof. Using Theorem 2.6, we have
Dmfð1� qÞL½/� u0�g ¼ DmðwN½/�Þ: ð28Þ
According to Lemma 3.1, it holds
Dmfð1� qÞL½/� u0�g ¼L½um � vmum�1�: ð29Þ
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Using Theorems 2.1 and 2.2, we have
DmðwN½/�Þ ¼
Xm

k¼0

DkðwÞDm�kðN½/�Þ ¼
Xm

k¼0

bkð~x; tÞDm�kðN½/�Þ;
which gives, since b0ð~x; tÞ ¼ 0, that
DmðwN½/�Þ ¼
Xm

k¼1

bkð~x; tÞDm�kðN½/�Þ: ð30Þ
Substituting (29) and (30) into (28) ends the proof. h

Remark 3.2. The zeroth-order deformation equation (21) is a special case of the zeroth-order deformation equation (26) in
case of bkð~x; tÞ ¼ akHð~x; tÞ for k P 1.

Theorem 3.4. Write
/ ¼
Xþ1
m¼0

umð~x; tÞqm; w ¼
Xþ1
k¼1

bkð~x; tÞqk;
where q 2 ½0;1� is the homotopy-parameter, bkð~x; tÞ is either equal to zero or a non-zero function, but at least one of them is non-
zero. Let L denote an auxiliary linear operator, N a nonlinear operator, and u0ð~x; tÞ a guess solution, respectively. Besides, let
A½/;~x; t; q� be a function of /;~x; t and q, which satisfies
A½/;~x; t; q� ¼ 0; when q ¼ 0 and q ¼ 1:
For the zeroth-order deformation equation defined by
ð1� qÞL½/� u0� ¼
Xþ1
k¼1

bkð~x; tÞqk

 !
N½/� þA½/;~x; t; q�; ð31Þ
the corresponding mth-order deformation equation (m P 1) reads
L½umð~x; tÞ � vmum�1ð~x; tÞ� ¼
Xm

k¼1

bkð~x; tÞDm�kðN½/�Þ þ DmðA½/;~x; t; q�Þ; ð32Þ
where the operator Dk is defined by (10) and vm is defined by (15).

Proof. Using Theorems 2.6 and 2.1, we have
Dm ð1� qÞL½/� u0�f g ¼ Dm wN½/�ð Þ þ DmðA½/;~x; t; q�Þ: ð33Þ
According to Lemma 3.1, it holds
Dmfð1� qÞL½/� u0�g ¼L½um � vmum�1�: ð34Þ
Using Theorems 2.1 and 2.2, we have
DmðwN½/�Þ ¼
Xm

k¼0

DkðwÞDm�kðN½/�Þ ¼
Xm

k¼0

bkð~x; tÞDm�kðN½/�Þ;
which gives, since b0ð~x; tÞ ¼ 0, that
Dm wN½/�ð Þ ¼
Xm

k¼1

bkð~x; tÞDm�k N½/�ð Þ: ð35Þ
Substituting (39) and (35) into (38) ends the proof. h

Remark 3.3. The zeroth-order deformation equation (26) is a special case of the zeroth-order deformation equation (31) in
case of A½/;~x; t; q� ¼ 0.

Theorem 3.5. Write
/ ¼
Xþ1
m¼0

umð~x; tÞqm;
where q 2 ½0;1� is the homotopy-parameter. Let L denote an auxiliary linear operator, N a nonlinear operator, and u0ð~x; tÞ a guess
solution, respectively. Besides, let B½/;~x; t; q� be a function of /;~x; t and q, which satisfies
B½/;~x; t; q� ¼ 0; when q ¼ 0;
B½/;~x; t; q� ¼ cð~x; tÞN½/�; when q ¼ 1;
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where cð~x; tÞ–0 is a non-zero function. For the zeroth-order deformation equation defined by
ð1� qÞL½/� u0� ¼ B½/;~x; t; q�; ð36Þ
the corresponding mth-order deformation equation (m P 1) reads
L½umð~x; tÞ � vmum�1ð~x; tÞ� ¼ DmðB½/;~x; t; q�Þ; ð37Þ
where the operator Dm is defined by (10) and vm is defined by (15).

Proof. Using Theorem 2.6, we have
Dmfð1� qÞL½/� u0�g ¼ DmðB½/;~x; t; q�Þ: ð38Þ
According to Lemma 3.1, it holds
Dm ð1� qÞL½/� u0�f g ¼L½um � vmum�1�: ð39Þ
This ends the proof. h

Remark 3.4. Obviously, the zeroth-order deformation equation (16), (21), (26) and (31) are special cases of the zeroth-order
deformation equation (36). However, up to now, it is unknown which kind of zeroth-order deformation equation is better or
best, as discussed in Liao’s book [21]. In most cases, the zeroth-order deformation equation (16) can give satisfied homotopy-
series solution, if the auxiliary linear operator L, the auxiliary function Hð~x; tÞ and convergence-control parameter �h are
properly chosen, as pointed out by Liao [21–23,25,60,26] and others [28–59].

In most cases, in order to get the high-order deformation equation related to a nonlinear equation N½u� ¼ 0, one just
needs to calculate the term DkðN½/�Þ. This can be easily done by means of the properties of the homotopy-derivatives given
in Section 2.
4. Examples

In this section, some simple examples are used to show how to apply the theorems given in this article to deduce high-
order deformation equations of nonlinear problems.

Example 1. Consider the nonlinear heat transfer problem [44]:
ð1þ �uÞu0 þ u ¼ 0; uð0Þ ¼ 1:
Choosing Lu ¼ u0 þ u as the auxiliary linear operator, and defining the nonlinear operator
N½/� ¼ ð1þ �/Þ/0 þ /;
where
/ ¼
Xþ1
k¼0

ukðtÞqk
is a homotopy-series, we construct such a zeroth-order deformation equation
ð1� qÞL½/� u0ðtÞ� ¼ q�hN½/�;
subject to the initial condition
/ ¼ 1; when t ¼ 0;
where u0ðtÞ is an initial guess satisfying the initial condition. According to Theorem 3.1, the corresponding mth-order defor-
mation equation reads
L½umðtÞ � vmum�1ðtÞ� ¼ �hDm�1ðN½/�Þ;
subject to the initial guess
umð0Þ ¼ 0:
For this example, using Theorems 2.1, 2.2 and 2.3, one has
DkðN½/�Þ ¼ Dkð/0Þ þ Dkð/Þ þ �Dkð//0Þ ¼ u0k þ uk þ �
Xk

n¼0

uk�nu0n:
The corresponding homotopy-series solution is given by
uðtÞ ¼
Xþ1
k¼0

ukðtÞ;
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which is convergent for any physical parameter 0 6 � < þ1 if one chooses the convergence-control parameter
�h ¼ �ð1þ �Þ�1. For details, please refer to Abbasbandy [44].

Example 2. Consider the nonlinear oscillation equation [26]:
u00ðtÞ þ kuðtÞ þ �u3ðtÞ ¼ 0; uð0Þ ¼ 1; u0ð0Þ ¼ 0:
Let x denote the unknown frequency of the solution. Write s ¼ xt, the above equation becomes
x2u00ðsÞ þ kuðsÞ þ �u3ðsÞ ¼ 0; uð0Þ ¼ 1; u0ð0Þ ¼ 0:
Define
N½/;X� ¼ X2/00 þ k/þ �/3;
where the prime denotes the differentiation with respect to s, and
/ ¼
Xþ1
k¼0

ukðtÞqk; X ¼
Xþ1
k¼0

xkqk
are two homotopy-series. Choosing the auxiliary linear operator
Lu ¼ u00 þ u;
we construct the following zeroth-order deformation equation
ð1� qÞL½/� u0� ¼ q�hN½/;X�; q 2 ½0;1�
subject to the initial conditions
/ ¼ 1; /0 ¼ 0; at t ¼ 0;
where u0ðtÞ is an initial guess satisfying the initial conditions. According to Theorem 3.1, the corresponding high-order defor-
mation equation reads
L½umðsÞ � vmum�1ðsÞ� ¼ �hDm�1ðN½/;X�Þ;
subject to the initial conditions
umð0Þ ¼ 0; u0mð0Þ ¼ 0:
In this case, using Theorems 2.1–2.3, and Molabahrami and Khani’s Theorem, we have
DkðN½/;X�Þ ¼ DkðX2/00Þ þ kDkð/Þ þ �Dkð/3Þ ¼
Xk

i¼0
u00k�i

Xi

j¼0

xi�jxj þ kuk þ �
Xk

i¼0

uk�i

Xi

j¼0

ui�juj:
The corresponding homotopy-series solutions are given by
uðtÞ ¼
Xþ1
k¼0

ukðxtÞ; x ¼
Xþ1
k¼0

xk;
which are convergent if the convergence-control parameter �h is chosen properly. For example, when k ¼ 0, the homotopy-
series solutions are convergent for any a physical parameter 0 6 � < þ1 by using �h ¼ �ð1þ �Þ�1. For details, please refer to
Liao and Tan [26].
5. Discussions

The introduction of the convergence-control parameter �h greatly improves the early homotopy analysis method. It is the
convergence-control parameter �h that provides us, for the first time, a simple way to ensure the convergence of series solu-
tion of nonlinear problems. Different from all previous analytic methods, one can ensure the convergence of series solution of
strongly nonlinear problems by means of choosing a proper value of the convergence-control parameter �h. This is an obvious
advantage of the HAM. Besides, unlike all perturbation and previous non-perturbation methods, the HAM provides us with
great freedom to choose proper base functions so as to give better approximations of nonlinear problems. Note that (16) can
be rewritten as
ð1� qÞL̂½/� u0� ¼ qN½/�; ð40Þ
where
L̂ ¼ L

�hHð~x; tÞ
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can be regarded as a auxiliary linear operator, too. The above expression opens out that, in the frame of the late HAM, the
auxiliary linear operator is chosen in several steps: a basic linear operator is first chosen, then an auxiliary function is deter-
mined due to the rule of solution expression suggested by Liao [21], and finally the convergence-control parameter �h is deter-
mined to ensure the convergence of the homotopy-series solution. In fact, the zeroth-order deformation equations (21), (26),
(31) and (36) are obtained by generalizing the concept of convergence-control parameter �h. Define the vector
~a ¼ a1; a2; a3; . . .f g:
Obviously, the vector~a in the zeroth-order deformation equation (21) is a kind of generalization of the convergence-con-
trol parameter �h in Eq. (16), and thus is called the convergence-control vector. Similarly, the vector
~b ¼ fb1ð~x; tÞ; b2ð~x; tÞ; b3ð~x; tÞ; . . .g
in Eqs. (26) and (31) is a further generalization of the so-called convergence-control vector~a in Eq. (21). Similarly, by prop-
erly choosing the convergence-control vectors ~a or ~b, one can ensure the convergence of the homotopy-series solutions of
Eqs. (26), (31), and (36). For the zeroth-order deformation equation (16), Liao suggested to choose a proper value of �h by
plotting the so-called �h-curves. Let dð~x; tÞ denote the residual error of the mth-order homotopy-series approximation, and
D ¼

R R
d2ð~x; tÞdV dt denote the integral of the residual error. Plotting the curves of D � �h, it is straightforward to find a region

of �h in which D decreases to zero as the order of approximation increases. Then, a convergent homotopy-series solution is
obtained by choosing a value in this region. For the zeroth-order deformation equation (21), Marinca [65] currently proposed
an interesting approach to determine the convergence-control vector ~a by minimizing the residual error. Obviously, some
rigorous mathematical theorems are urgently needed to find the best convergence-control parameter �h for (16), the best con-
vergence-control vector ~a for (21) and the best convergence-control vector ~b for (26) and (31), respectively.

Obviously, the various types of the zeroth-order deformation equations such as (16), (21), (26), (31) and (36) provide us
great freedom and flexibility to apply the HAM. Besides, for each type of these zeroth-order deformation equations, one has
great freedom and flexibility to choose the auxiliary linear operator L: even the order of L can be different from original
nonlinear problems, as shown by Liao and Tan [26], who illustrated that a 2nd-order nonlinear PDE can be replaced by
an infinite number of 4th or 6th-order linear PDEs. Such kind of freedom and flexibility greatly simplifies the resolving of
complicated nonlinear equations. By means of the HAM, a nonlinear ODE is often replaced by an infinite number of linear
ODEs, and a nonlinear PDE can be transferred into an infinite number of linear ODEs. Besides, a nonlinear differential equa-
tion with variable coefficients can be replaced by an infinite number of linear differential equations with constant coeffi-
cients. Certainly, this kind of freedom and flexibility increases the possibility of finding satisfactory series solution of a
given nonlinear problem. However, it also enhances the difficulties in applying and learning it. Up to now, it is even unknown
whether or not there exists the best auxiliary linear operator and the best zeroth-order deformation equation for a nonlinear
equation which has at least one solution. To simplify the applications of the HAM, Liao [21] suggested some rules, i.e. the rule
of solution expression, the rule of solution existence, and the rule of ergodicity for coefficient of homotopy-series solution.
Obviously, some rigorous mathematical theorems are urgently needed to choose the auxiliary linear operators.

The freedom and flexibility in the choose of the auxiliary linear operator L in the zeroth-order deformation equation can
be used to develop some new numerical techniques for strongly nonlinear problems. For example, the so-called ‘‘general
boundary element method” [70–73], which is based on the HAM, gives accurate convergent results of the viscous driven
flows (governed by the exact Navier–Stokes equations) in a square cavity with the high Reynolds number Re ¼ 7500, as
shown by Zhao and Liao [74]. Currently, Wu and Cheung [49] applied the HAM to give an explicit numerical approach for
Riemann problems related to nonlinear shallow water equations. All of these illustrate the great potential of the HAM com-
bined with traditional numerical techniques.

The zeroth-order deformation equations (21), (26), (31) and (36) are rather general. Using them, Liao [21] proved that the
HAM logically contains other previous non-perturbation methods, such as Lyapunov’s artificial small parameter method
[13], the d-expansion method [14,15] and Adomian’s decomposition method [16–19]. Thus, the HAM unifies the previous
non-perturbation methods. Besides, the so-called ‘‘homotopy perturbation method” [67,68] (proposed in 1998) is exactly
the same as the early homotopy analysis method (proposed in 1992) and is a special case of the late homotopy analysis
method in case of �h ¼ �1, as illustrated by Abbasbandy [44] and proved by Sajid et al. [46,69] in general. Indeed, Dr. He
[67,68] simply copied Liao’s idea of the early HAM, and his so-called ‘‘homotopy perturbation method” proposed in 1998
(6 year later) ‘‘has nothing new except its name”, as pointed out by Hayat and Sajid [46,69].

Frankly speaking, the HAM is a method for the time of computer: without high-performance computer and symbolic
computation software such as Mathematica, maple and so on, it is impossible to solve high-order deformation equations
quickly so as to get approximations at high enough order. Without computer and symbolic computation software, it is also
impossible to choose a proper value of the convergence-control parameter �h by means of analyzing the high-order approx-
imations. It is true that expressions given by the HAM are often lengthy and thus can be hardly expressed on only one page.
However, by means of computer and symbolic computation software, it often needs only a few seconds to calculate these
lengthy results! Note that, one needs much more time to calculate a traditional ‘‘ analytic” expression in a length of half page
by means of a traditional computational tool such as a slide rule. So, if we regard keyboard of computer as a pen, hard disk as
papers, and CPU as a slide rule, we can calculate lengthy ‘‘analytic” expressions given by the HAM in a few seconds by means
of a computer ! So, it seems that the traditional concept ‘‘analytic solution”, which was formed hundreds year ago in the time
of slide rule, should be modified in the time of computer that has changed our life completely.
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Finally, according to our experience, it seems that, as long as a nonlinear equation has at least one solution, then one can
always construct a kind of zeroth-order deformation equation to get convergent homotopy-series solution. However, hun-
dreds of successful examples is not better than a rigorous mathematical proof. So, to end this article, we give here such a
hypothesis:

Hypothesis 1. If a nonlinear equation has at least one solution, then there exists at least one zeroth-order deformation
equation such that its homotopy-series solution converges to the solution of the original nonlinear equation.
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