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The three-body problem can be traced back to Newton in 1687, but it is still an open question today. Note that only a few periodic
orbits of three-body systems were found in 300 years after Newton mentioned this famous problem. Although triple systems are
common in astronomy, practically all observed periodic triple systems are hierarchical (similar to the Sun, Earth and Moon). It
has traditionally been believed that non-hierarchical triple systems would be unstable and thus should disintegrate into a stable
binary system and a single star, and consequently stable periodic orbits of non-hierarchical triple systems have been expected to
be rather scarce. However, we report here one family of 135445 periodic orbits of non-hierarchical triple systems with unequal
masses; 13315 among them are stable. Compared with the narrow mass range (only 10−5) in which stable “Figure-eight” periodic
orbits of three-body systems exist, our newly found stable periodic orbits have fairly large mass region. We find that many of these
numerically found stable non-hierarchical periodic orbits have mass ratios close to those of hierarchical triple systems that have
been measured with astronomical observations. This implies that these stable periodic orbits of non-hierarchical triple systems
with distinctly unequal masses quite possibly can be observed in practice. Our investigation also suggests that there should
exist an infinite number of stable periodic orbits of non-hierarchical triple systems with distinctly unequal masses. Note that our
approach has general meaning: in a similar way, every known family of periodic orbits of three-body systems with two or three
equal masses can be used as a starting point to generate thousands of new periodic orbits of triple systems with distinctly unequal
masses.
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1 Introduction

Triple systems are common, and they are key objectives in
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astrophysics [1]. Although the three-body system has been
investigated for more than three hundred years [2-5], it is still
a challenging and open question for astrophysicists because
of its inherent chaotic characteristics [6]. Recently, based on
the assumption of ergodicity, Stone and Leigh [7] have ob-
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tained a statistical solution to the chaotic, non-hierarchical
three-body system. It has traditionally been believed that
bound, non-hierarchical triple systems are always unstable
and that they disintegrate into a stable binary system and a
single star [7]. Therefore, periodic orbits of the three-body
problem are extremely precious since they are the only way
to penetrate the fortress that was previously considered to be
inaccessible [6]. However, only three families of periodic or-
bits had been found in more than 300 years until Šuvakov
and Dmitrašinović [8] numerically found 13 distinct periodic
orbits of the three-body problem with equal masses. Li and
Liao [9] subsequently found more than six hundred new fam-
ilies of periodic orbits of the three-body system with equal
masses. Li et al. [10] also obtained more than one thou-
sand new families of periodic orbits of the three-body system
with two equal-mass bodies. Among the approximately two
thousand new families of periodic orbits of the three-body
system, dozens of linearly stable periodic orbits were found
for non-hierarchical triple systems [10, 11], however, some
of them have three equal-mass bodies [11], and the others
have two equal-mass bodies [10]. The famous “Figure-eight”
periodic orbit [12,13] of the equal-mass triple system is non-
hierarchical and linearly stable [14]. Unfortunately, the stable
mass region of the figure-eight solution is very narrow (only
10−5) [15]. That is to say, the figure-eight solution is sta-
ble only when the three bodies have almost equal masses, so
the probability of observing this periodic orbit is extremely
low in practice. To date, non-hierarchical periodic triple stars
have not been found through astronomical observations. In
this paper, we focus on periodic orbits of non-hierarchical
triple systems with unequal masses.

2 Numerical model and method

The motion of the Newtonian planar three-body problem is
described by the differential equations:

r̈i =

3∑
j=1, j,i

Gm j(r j − ri)
|ri − r j|3

, (1)

where mi and ri are mass and position of the ith body (i =
1, 2, 3), G is the Newtonian gravity constant, respectively.
Without loss of generality, we set the gravitational constant
G = 1 by properly choosing a characteristic mass M, a char-
acteristic spatial length R and a characteristic time T ∗.

Montgomery [16] proved that all three-body orbits of zero
angular momentum have syzygies (i.e., collinear instant of
three bodies) except for the Lagrange’s solution. Thus, it
is reasonable to consider initial conditions with the collinear
configuration [17-19]. In this paper, we investigate unequal-
mass triple systems with the initial positions r1(0) = (x1, 0),

r2(0) = (x2, 0), r3(0) = (x3, 0) and the initial velocities
ṙ1(0) = (0, v1), ṙ2(0) = (0, v2), ṙ3(0) = (0, v3), which are
perpendicular to the straight line formed by three bodies.

The first step to achieve our goal is to find periodic orbits of
equal-mass triple systems with the collinear initial condition
configuration mentioned above. We numerically search for
periodic orbits of the three-body problem with equal masses
and zero angular momentum by means of the grid search
method, the Newton-Raphson method [20,21] and the numer-
ical strategy, namely the clean numerical simulation (CNS)
[22-27]. The CNS is a numerical strategy to gain reliable nu-
merical simulation of chaotic dynamical systems, such as the
three-body system. The CNS is based on an arbitrary Tay-
lor series method [28-30] and multiple-precision arithmetic
[31], plus a convergence verification by means of an addi-
tional computation with smaller numerical noise. Li and Liao
[9,32] found that many periodic orbits of three-body problem
might be lost by using conventional numerical algorithms in
double precision. Thus, here we apply the CNS to integrate
the differential equations of the three-body system.

At the beginning, we numerically search for periodic or-
bits of the three-body problem with equal masses m1 =

m2 = m3 = 1 and zero angular momentum. Due to the
homogeneity of the potential field for the three-body prob-
lem, the initial condition x2 can be fixed to unit. Then we
choose the velocity v2 = −x1v1 due to zero angular momen-
tum. Without loss of generality, we assume total momentum
m1 ṙ1 + m2 ṙ2 + m3 ṙ3 = 0. Therefore, the initial positions can
be specified as r1(0) = (x1, 0), r2(0) = (1, 0), r3(0) = (0, 0)
and the initial velocities can be specified as ṙ1(0) = (0, v1),
ṙ2(0) = (0,−x1v1), ṙ3(0) = (0,−v1 + x1v1).

With the initial configuration, the orbits of the three-body
problem are determined by two parameters x1 and v1. Ac-
cording to the numerical searching method of the three-body
problem [8, 9], the first step is to gain approximated initial
values of periodic orbits in a two-dimensional space (i.e.,
the x1-v1 plane). We investigate a region of this plane:
x1 ∈ (−1, 0) and v1 ∈ (0, 10). We employ 4000 × 40000
uniform grid points as initial conditions in this region. With
these initial conditions, the differential equations (1) are nu-
merically solved by an eight-oder Runge Kutta ODE solver
dop853 developed by Hairer et al. [33]. For each initial con-
dition, the return proximity function d(y(0),T0) = min

t≤T0
||y(t)−

y(0)|| is calculated up to integration time T0 = 200. We
choose the initial conditions and periods T as possible can-
didates of periodic orbits when the return proximity function
d(y(0),T0) < 0.1.

The next step is to improve the precision of the ap-
proximate initial conditions of the periodic orbits using the
Newton-Raphson method [20, 21] and the CNS by means of
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correcting the parameters x1, v1 and period T . The precision
of the initial conditions of the periodic orbits is improved con-
tinually until the level of the return proximity function is less
than 10−12.

We find that one equal-mass periodic orbit has good
stability. The initial condition of this periodic orbit
is r1(0) = (x1, 0), r2(0) = (1, 0), r3(0) = (0, 0),
ṙ1(0) = (0, v1), ṙ2(0) = (0, v2), ṙ3(0) = (0,−(m1v1 +

m2v2)/m3), where x1 = −0.372008640907423, v1 =

1.21800411067968, v2 = 0.4531080538336022 and the pe-
riod T = 7.53971451331772 and m1 = m2 = m3 = 1. Note
that it holds m1v1x1 + m2v2x2 + m3v3x3 = 0. Using the ho-
motopy classification method [8, 34], the free group element
of this periodic orbit is bABabaBAba. This periodic orbit
has the same free group element with the moth-I orbit [8],
but their periodic orbits are different. Note that, for the as-
trophysical three-body system, the masses of the bodies are
rarely equal. Thus, using this as a starting point, we investi-
gate periodic orbits of unequal-mass triple systems by means
of the numerical continuation method [35].

The numerical continuation method is used to gain peri-
odic solutions of a nonlinear dynamical system with a natural
parameter

u̇ = G(u, λ). (2)

Using a known periodic orbit u0 at λ0 as initial guess, we
can obtain a new periodic orbit u′ at λ + ∆λ by means of the
Newton-Raphson method [20,21] and the CNS [22-27] when
∆λ is sufficient small to guarantee the convergence of itera-
tion.

Because of homogeneity of the potential field of the three-
body problem, we can fix the initial distance of two bodies
to unit. Without loss of generality, we consider the case of
zero momentum (i.e., m1 ṙ1 +m2 ṙ2 +m3 ṙ3 = 0). The periodic
orbits are determined by x1, v1, v2 and T with masses m1, m2

and m3. Therefore, the initial positions of three bodies can be
described by

r1(0) = (x1, 0), r2(0) = (1, 0), r3(0) = (0, 0), (3)

and the initial velocities can be described by

ṙ1(0) = (0, v1), ṙ2(0) = (0, v2),

ṙ3(0) =
(
0,−m1v1 + m2v2

m3

)
.

(4)

With the fixed masses m2 = m3 = 1, periodic orbits can be
obtained by means of the numerical continuation method for
different masses m1. Using a periodic orbit with equal masses
as a starting point, we apply the Newton-Raphson method
and the CNS to gain a new periodic orbit at m1 + ∆m by con-
tinually modifying the parameters x1, v1, v2 and T , where ∆m

is small enough to guarantee the convergence of iteration. In
this way, we can gain periodic orbits with different masses
m1 , 1 and m2 = m3 = 1.

Similarly, using the above periodic orbits with m1 , 1
and m2 = m3 = 1 as starting points, we further employ the
Newton-Raphson method and the CNS to gain periodic orbits
at m2 + ∆m by continuously correcting the parameters x1, v1,
v2 and T , where ∆m is small enough to guarantee the conver-
gence of iteration. Consequently, we gain periodic orbits of
the triple system with unequal masses m1 , m2 , m3.

Note that the periodic orbits might have nonzero angular
momentum since we do not restrict the angular momentum.

3 Numerical results

Starting from the periodic orbit of the equal-mass triple sys-
tem mentioned above, we obtain 135445 periodic orbits in the
region of m1 ∈ [0.8, 1.1] and m2 ∈ [0.7, 1.2] with a fixed mass
m3 = 1 by means of the continuation method. The periodic
orbits are outputted with the mass interval δm = 0.001. For
the detailed initial conditions and periods, please see Supple-
mentary Material. Three examples of these periodic orbits
are shown in Figure 1. Their initial conditions and periods of
the three periodic orbits are listed in Table 1.

Due to the homogeneity of the potential field for the three-
body problem, there is a scaling law: r′ = αr, v′ = v/

√
α,

t′ = α3/2t and energy E′ = E/α and angular momentum L′ =√
αL. The scale-invariant average period T̄ ∗ = (T/k)|E|3/2

is approximately equal to a constant for periodic orbits of
the three-body problem with equal masses [9, 36], where k
is the number of free group words of periodic orbits. For
the family of periodic orbits bABabaBAba, we always have
the number of the free group words k = 10. For the newly
found periodic unequal-mass orbits, Figure 2(a) shows that
the scale-invariant average period T̄ ∗ = (T/k)|E|3/2 depends
on the mass of bodies. The multiple linear regression for
these periodic orbits is (T/k)|E|3/2 = 2.455m1 + 1.655m2 −
1.688. The standard error of this multiple linear regression
is 0.021. It indicates that the scale-invariant average period
T̄ ∗ = (T/k)|E|3/2 is approximately linear to m1 and m2 for
this family of periodic orbits. Janković and Dmitrašinović
[37] found that the scale-invariant angular momentum is a
function of topologically rescaled period for the Broucke-
Hadjidemetriou-Hénon family of periodic triple orbits with
equal masses. For our newly found family of periodic orbits,
it is demonstrated that the scale-invariant angular momentum
L|E|1/2 varies among different masses m1 and m2 as shown in
Figure 2(b). It implies that the scale-invariant angular mo-
mentum also depends on the mass of bodies for this family
of periodic orbits of unequal-mass triple systems. Note that
some regions of the Figure 2 are blank. It suggests that no

https://engine.scichina.com/publisher/scp/journal/SCPMA/doi/10.1007/s11433-020-1624-7?slug=supplement
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Figure 1 (Color online) Three newly found stable periodic orbits of non-hierarchical triple systems with different masses and period. (a) m1 = 0.87, m2 = 0.8,
m3 = 1 and T = 5.9889127121; (b) m1 = 0.9, m2 = 0.85, m3 = 1 and T = 6.3508660391; (c) m1 = 0.93, m2 = 0.89, m3 = 1 and T = 6.6805531109. Body-1:
blue line; Body-2: red line; Body-3: black line. For their movies, please see Supplementary Material.

Table 1 Initial conditions and periods T of three stable periodic orbits for non-hierarchical three-body systems in the case of r1(0) = (x1, 0), r2(0) = (1, 0),
r3(0) = (0, 0), ṙ1(0) = (0, v1), ṙ2(0) = (0, v2), ṙ3(0) = (0,−(m1v1 + m2v2)/m3) when G = 1

m1 m2 m3 x1 v1 v2 T

0.87 0.8 1 −0.185517464380131 2.02215468795289 0.396897646805751 5.98891271205862

0.9 0.85 1 −0.222746846934935 1.78127695164077 0.415003557019123 6.35086603914435

0.93 0.89 1 −0.261036674363779 1.58833353187897 0.430447701476608 6.68055311088189
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Figure 2 (Color online) The contour map of the scale-invariant average period and scale-invariant angular momentum of newly found periodic orbits. (a)
The contour map of the average scale-invariant period T̄ ∗ = (T/k)|E|3/2 in the m1-m2 plane, where E, T , k is total energy, period and the number of free group
words of periodic orbits, respectively; (b) the contour map of the scale-invariant angular momentum L|E|1/2 in the m1-m2 plane, where L is angular momentum.

periodic orbits can be found there because the orbits of the
three-body system might have collision in that mass region.

Stability is an important property for periodic orbits be-
cause only stable triple systems can probably be observed.
The stability of periodic orbits of the three-body system can
be investigated according to the characteristic multipliers of
the monondromy matrix [14]. Due to the fixed center of mass,
the dimension of the planar three-body problem can be re-
duced to eight. We employ a theorem proved by Kepela and
Simó [38] to determine the linear stability of periodic orbits
of the three-body problem through the monondromy matrix.
With the monodromy matrix, we can gain the equation as fol-

lows:

T 2 − (α − 4)T + β − 4α + 8 = 0, (5)

where α = trace(A) =
∑8

i=1 aii, β =
∑

1≤i< j≤8(aiia j j − ai ja ji),
ai j is the elements of the monondromy matrix A.

Therorem [38] Let T1 and T2 be solutions of eq. (5). If
∆ = (α − 4)2 − 4(β − 4α + 8) > 0, |T1| < 2 and |T2| < 2, then
all eigenvalues of the monodromy matrix A are on the unit
circle.

Using this theorem, we find that 13315 periodic orbits are
linearly stable among the 135445 newly found periodic or-
bits. Three examples of the stable periodic orbits are shown

https://engine.scichina.com/publisher/scp/journal/SCPMA/doi/10.1007/s11433-020-1624-7?slug=supplement
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in Table 1 and Figure 1. The domain of the masses (m1,m2)
of stable periodic orbits is shown in Figure 3. The mass re-
gion becomes narrow when the masses m1 and m2 decrease.
Note that the mass region of the stable figure-eight solution
[12, 13] is very narrow (only 10−5) [15]. So, the mass re-
gion of the newly found stable non-hierarchical periodic or-
bits is fairly large and their masses have apparent differences.
For instance, for the stable non-hierarchical periodic orbit
m1 = 0.87, m2 = 0.8 and m3 = 1, we have its mass ratio
m2/m1 ≈ 0.92 and m2/m3 = 0.8. A recently observed hi-
erarchical triple system [39] has masses 1.21, 1.14 and 1.4
M⊙, corresponding to mass ratios 0.94 and 0.81. It should
be emphasized that the mass ratios of our newly found stable
non-hierarchical periodic orbits are close to the mass ratios
of the hierarchical triple system which has been measured by
the astronomical observation. This implies that our newly
found stable non-hierarchical periodic orbits are likely to be
observed in astronomy.

Since the dimensionless quantities are used in the above
numerical results, the variables can be rescaled to applica-
tions of stellar dynamics [40] through GMT ∗

2
/R3 = 1, where

M, T ∗, R and G are the characteristic mass, time and length
and the Newtonian gravitational constant, respectively. If we

choose M = M⊙ and R = 10 AU, then T ∗ =
√

R3

GM ≈ 5 years.
For instance, with these units of quantities, the stable non-
hierarchical periodic orbit with m1 = 0.87M⊙, m2 = 0.8M⊙
and m3 = M⊙ has a period of about 30 years. Note that the hi-
erarchical triple system HD 188753 has a period of 25 years
and semi-major axis of 11.8 AU [41]. Thus, our newly found
stable non-hierarchical triple systems have similar size and
period with the observed hierarchical triple system.

4 Discussion and conclusions

There may be two reasons why non-hierarchical periodic
triple stars have not yet been found through astronomical ob-
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Figure 3 (Color online) The stability region of periodic orbits with m3 = 1
in the m1-m2 plane. Shadowing domain: stable periodic orbits.

servations. On the one hand, accurate positions and motions
of non-hierarchical systems are not easy to determine, be-
cause they are complicated and far away from the Earth. On
the other hand, few periodic non-hierarchical unequal-mass
triple systems have been found in previous theoretical or nu-
merical studies. Fortunately, the Gaia mission [42] has pro-
duced the high-precision measurements of positions and mo-
tions of nearly 1.7 billion stars, which provide a major re-
source for studying non-hierarchical periodic triple systems.
This suggests that our newly found stable non-hierarchical
periodic orbits are likely to be observed in the near future.

In this paper, we present one family of 135445 periodic or-
bits for non-hierarchical triple system with unequal masses.
Surprisingly, among the 135445 periodic orbits of this fam-
ily, 13315 periodic orbits are linearly stable in a large mass
region. Most of them have fairly different masses, which
suggest that our numerically found stable periodic orbits are
likely to be observed in practice. Our numerical approach
also has general meanings. Although we have only consid-
ered here one family of periodic orbits corresponding to the
free group element bABabaBAba, we have found 13315 sta-
ble orbits among the 135445 periodic orbits. We emphasize
that thousands of families of periodic orbits of three-body
systems with two or three equal masses have been found to
date [9, 10, 32]: each of them could be used similarly as a
starting point to generate thousands of stable periodic orbits
of triple systems with distinctly unequal masses (but with the
same free group element). Therefore, in theory, there should
exist an infinite number of stable periodic orbits of non-
hierarchical triple systems with distinctly unequal masses.
These newly found stable periodic orbits of non-hierarchical
unequal-mass triple systems have broad impact for astro-
physics: they may inspire theoretical and observational stud-
ies of non-hierarchical triple systems, the formation of triple
stars [1], gravitational waves patterns [43] and gravitational
waves observations [44] of non-hierarchical triple systems.
Note that the periodic orbits and the stability analysis we have
reported here are two-dimensional. In the future it will be
valuable to search for stable three-dimensional periodic or-
bits of unequal-mass triple systems.
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21 M. Lara, and J. Peláez, Astron. Astrophys. 389, 692 (2002).
22 S. Liao, Tellus A 61, 550 (2009).
23 S. Liao, Commun. Nonlinear Sci. Numer. Simul. 19, 601 (2014),

arXiv: 1305.6094.
24 S. J. Liao, and P. F. Wang, Sci. China-Phys. Mech. Astron. 57, 330

(2014), arXiv: 1305.4222.
25 X. M. Li, and S. J. Liao, Sci. China-Phys. Mech. Astron. 57, 2121

(2014), arXiv: 1312.6796.
26 Z. L. Lin, L. P. Wang, and S. J. Liao, Sci. China-Phys. Mech. Astron.

60, 014712 (2017), arXiv: 1612.00120.
27 T. Hu, and S. Liao, J. Comput. Phys. 418, 109629 (2020), arXiv:

1910.11976.
28 G. Corliss, and Y. F. Chang, ACM Trans. Math. Softw. 8, 114 (1982).
29 Y. F. Chang, and G. F. Corhss, Comput. Math. Appl. 28, 209 (1994).
30 R. Barrio, F. Blesa, and M. Lara, Comput. Math. Appl. 50, 93 (2005).
31 O. Portilho, Comput. Phys. Commun. 59, 345 (1990).
32 X. Li, and S. Liao, New Astron. 70, 22 (2019), arXiv: 1805.07980.
33 E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential

Equations I: Nonstiff Problems (Springer-Verlag, Berlin, 1993).
34 R. Montgomery, Nonlinearity 11, 363 (1998).
35 E. L. Allgower, and K. Georg, Introduction to Numerical Continuation

Methods, Vol. 45 (SIAM, New York, 2003).
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