
Example 1: a system of ODEs in finite interval

Consider a system of coupled ODEs9

(1 +K)f ′′′′ −ReMf ′′ + 2Reff ′′′ −Kg′′ = 0, (5)

(1 +
K

2
)g′′ −ReK[2g − f ′′] +Re[2fg′ − f ′g] = 0, (6)

(7)

subject to

f(0) = 0, f(1) = 0, f ′(1) = 1, f ′′(0) = 0, (8)

g(1) = 0, g(0) = 0, (9)

where K is the ratio of viscosities, Re is the Reynolds number and M is the
Hartman number. Hayat9 has solved this problem by the HAM.

Here we solve this problem by BVPh 2.0. Since there are two ODEs in
system (5)–(6) without an unknown to be determined, we have NumEQ = 2 and
TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{f_,g_},Lambda_]:=(1+K)*D[f,{z,4}]

-Rey*M*D[f,{z,2}]+2*Rey*f*D[f,{z,3}]-K*D[g,{z,2}];

f[2,z_,{f_,g_},Lambda_]:=(1+K/2)*D[g,{z,2}]

-Rey*K*(2*g-D[f,{z,2}])+Rey*(2*f*D[g,z]-D[f,z]*g);

The eight boundary conditions are defined as

NumBC = 6;

BC[1,z_,{f_,g_}]:=f/.z->0;

BC[2,z_,{f_,g_}]:=f/.z->1;

BC[3,z_,{f_,g_}]:=(D[f, z]-1)/.z->1;

BC[4,z_,{f_,g_}]:=D[f,{z,2}]/.z->0;

BC[5,z_,{f_,g_}]:=g/.z->1;

BC[6,z_,{f_,g_}]:=g/.z->0;

Now let us input the solution intervals

zL[1]=0; zR[1]=1;

zL[2]=0; zR[2]=1;

Since all the solution intervals are in finite intervals, we do not have to specify
the integral interval to compute the squared residual.

The initial guesses are chosen as f0 = (z3− z)/2 and g0 = 0. They are input
as
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U[1,0] = (z^3-z)/2;

U[2,0] = 0;

The auxiliary linear operators are chosen as L1 = ∂4

∂z4 and L2 = ∂2

∂z2 . They
are defined as

L[1,u_]:=D[u,{z,4}];

L[2,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators.

Without loss of generality, let us consider the case when Re = M = 2 and
K = 1/2. These physical parameters are input as

Rey = M = 2;

K = 1/2;

At this time, we have input all the data for this problem, except the conver-
gence-control parameters c0[k]. Hayat9 chose the convergence-control parame-
ters c0[1]=c0[2]=-0.7 through h̄-curve. Here we minimize the squared residual
error of the 4th-order approximations to get optimal values for c0[k]

GetOptiVar[4,{},{c0[1],c0[2]}];

The convergence-control parameters c0[1] and c0[2] are found to be about
−0.5825 and −0.721452 respectively.

Then we call the main module BVPh to get the 20th-order approximations

BVPh[1, 20];

The 20th-order approximations are stored in U[i,20],i=1,2, while the cor-
responding squared residual error is ErrTotal[20]. We can use

Plot[{U[1,20],U[2,20]},{z,0,1},AxesLabel->{"z",""},

PlotStyle->{{Thin, Red}, {Dashed, Blue}},

PlotRange->{{0, 1}, {-0.2, 0.2}}]

to plot the 20th-order approximations, which is shown in Fig. 3. This figure
agrees with Hayat’s9 Fig. 9 and Fig. 12 when M = 2, Re = 2 and K = 0.5.
The 20th-order approximations give the values of f ′′(1) = 3.61076396287 and
g′(1) = −0.738463496789, which are the same with Hayat’s result.9 The total
error of the system for every two order of approximations is plotted in Fig. 4 by
the command
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ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 20}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 20}, {10^(-34), 1}},

AxesLabel -> {"m", "error"}]

We can see from it that the error decreases beautifully.
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Fig. 3: The curve of f(z) (solid), g(z) (dashed) for Example 1.
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Fig. 4: Total error vs. order of approximation for Example 1.
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