
Example 2: a system of coupled ODEs with alge-
braic property at infinity

Consider a set of two coupled nonlinear differential equations5

f ′′′(η) + θ(η)− f ′2 = 0, (10)

θ′′(η) = 3σf ′(η)θ(η), (11)

subject to

f(0) = f ′(0) = 0, θ(0) = 1, f ′(+∞) = θ(+∞) = 0, (12)

where the prime denotes differentiation with respect to the similarity variable
η, σ is the Prandtl number, f(η) and θ(η) relate to the velocity profile and
temperature distribution of the boundary layer, respectively. Liao5 employed
the HAM to solve this system analytically. Now we use the BVPh 2.0 to solve
it.

Under the transformation

ξ = 1 + λη, F (ξ) = f ′(η), S(ξ) = θ(η), (13)

Eqs. (10) and (11) become

λ2F ′′(ξ) + S(ξ)− F 2(ξ) = 0, (14)

λ2S′′(ξ) = 3σF (ξ)S(ξ), (15)

subject to
F (1) = 0, S(1) = 1, F (+∞) = S(+∞) = 0. (16)

Since there are two ODEs in system (14)–(15) without an unknown to be
determined, we have NumEQ = 2 and TypeEQ=1. This new system is defined as

TypeEQ = 1;

NumEQ = 2;

f[1,z_,{F_,S_},Lambda_]:=la^2*D[F,{z,2}]+S-F^2;

f[2,z_,{F_,S_},Lambda_]:=la^2*D[S,{z, 2}]-3*sigma*F*S;

The four boundary conditions (16) are defined as

NumBC = 4;

BC[1,z_,{F_, S_}] := F /. z -> 1;

BC[2,z_,{F_, S_}] := (G - 1) /. z -> 1;

BC[3,z_,{F_, S_}] := F /. z -> infinity;

BC[4,z_,{F_, S_}] := G /. z -> infinity;

Now let us input the solution intervals and integral intervals for computing
squared residual error
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zL[1] = 1;

zR[1] = infinity;

zL[2] = 1;

zR[2] = infinity;

zRintegral[1] = 10;

zRintegral[2] = 10;

The initial guesses are choosen as F0 = γ(ξ−2− ξ−3), S0 = ξ−4 and they are
input as

U[1, 0] = gamma*(z^(-2) - z^(-3));

U[2, 0] = z^(-4);

The auxiliary linear operators are LF = ξ
3

∂2

∂ξ2 + ∂
∂ξ and LS = ξ

5
∂2

∂ξ2 + ∂
∂ξ ,

which are defined as

L[1, u_] := D[u, {z, 2}]*z/3 + D[u, z];

L[2, u_] := D[u, {z, 2}]*z/5 + D[u, z];

Without loss of generality, let us consider the case when σ = 1, γ = 3 and
λ = 1/3. These physical parameters and the control parameters c0[k] are
defined as

sigma = 1;

gamma = 3;

la = 1/3;

c0[1] = -1/2;

c0[2] = -1/2;

Then we call the main module BVPh

BVPh[1, 20];

to get the 20th-order approximations. If we are not satisfied with the accuracy of
the 20th-order approximation, we can use BVPh[21,40], instead of BVPh[1,40],
to get 40th-order approximation or higher order approximation.

Note that U[1,40] and U[2,40] are the 40th-order approximations of the
transformed system (14), (15) and (16). To plot the curve of the 40th-order
approximations for the original problem, we first replace z with 1+λη to obtain
the 40th-order approximations for f ′(η) and g(η), then plot the curve we want.
This is done in Mathemcatica by the following command
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trans = {z -> 1 + la*\[Eta]};

Plot[Evaluate[{U[1, 40], U[2, 40]} /. trans],

{\[Eta], 0, 10},PlotRange -> {{0, 10}, {0, 1}},

AxesLabel -> {"\[Eta]", ""},

PlotStyle -> {{Thin, Red}, {Dashed, Blue}}]

and the curve is shown in Fig. 5. Here trans={z->1+la*\[Eta]} is the corre-
sponding transformation, \[Eta] is the symbol η in Mathematica..

The total error ErrTotal[k] of the transformed system for every two order
approximations is plotted in Fig. 6 by the following command

ListLogPlot[Table[{2 i, ErrTotal[2*i]}, {i, 1, 20}],

Joined -> True, Mesh -> All,

PlotRange -> {{2, 40}, {10^(-10), 0.01}},

AxesLabel -> {"m", "error"}]

Note that ErrTotal[k] not only measures the accuracy of the kth-order ap-
proximations for the transformed problem, but also measures the corresponding
approximations for the original problem.
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Fig. 5: The curve of f ′(η) (solid) and θ(η) (dashed) for Example 2.
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Fig. 6: Total error vs. order of approximation for Example 2.

The 40th-order approximations of f ′′(0) and g′′(0) are 0.693268 and −0.769-
879, respectively. Kuiken’s numerical result is f ′′(0) ≈ 0.693212 and g′(0) ≈
−0.769861. To get more accurate result, we have two choices. One is to call the
module BVPh to get higher order approximation as before, the other is to apply
the Padé approximation to the current approximations. The latter is done by
calling the module hp as follows

hp[Table[D[(U[1,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

hp[Table[D[(U[2,i]/.trans),\[Eta]]/.\[Eta]->0,

{i,0,40}],20,20]

which give 0.693212 and −0.769861, the [20, 20] homotopy-Padé approximations
of f ′′(0) and g′(0), respectively.

Note that we can compare the curve of 2nth-order approximation and the
[n, n] homotopy-Padé approximation in a simple and efficient way. Here we
compare U[1,40] and the [20, 20] homotopy-Padé approximations of U[1,i],
i = 0 · · · 40, in the Mathematica by the following command.

Plot[{U[1, 40]/.trans, hp[Table[U[1,i]/.trans,

{i, 0, 40}],20, 20]},{\[Eta],0,10},PlotRange->Full,

AxesLabel->{"\[Eta]", ""},

PlotStyle->{{Thin,Red},{Dashed,Blue}}

The comparison is shown in Fig. 7. From it we can see that the two are almost
the same. This validate the convergence of the approximations to some extent.
The above command is very efficent, because the Plot command in Mathematica
first substitute the sample points into the expression and then applies the hp to
a list of numerical values, rather than applies the hp to a list of expressions and
then substitute the sample points into the resulting expression.
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Fig. 7: The curve of 40th-order approximation of f ′(η) (solid) and [20, 20]
homotopy-Padé approximations of f ′(η) (dashed) for Example 2.
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