
Example 3: a system of ODEs with an unknown
parameter

Consider a system of ODEs10

U ′′ + (GrPr)θ −Nrϕ+ σ = 0, (17)

θ′′ +Nbθ
′ϕ′ +Nt(θ

′)2 +Nb +Nt − U = 0, (18)

ϕ′′ +
Nt

Nb
θ′′ − LeU = 0, (19)

subject to

U(−1) = U(1) = 0, θ(−1) = θ(1) = 0, ϕ(−1) = ϕ(1) = 0, (20)

with an additional condition ∫ 1

0

UdY = RePr, (21)

where Gr is the Grashof number, Pr the Prandtl number, Nr the buoyancy
ratio, σ the pressure parameter, Nb the Brownian motion parameter, Nt the
thermophoresis parameter, Le the Lewis number, and Re the Reynolds number.
All of the above parameters will be given for a special case except σ, which is
to be determined from the system. Xu10 solved this problem by the HAM.

Here we solve this problem by BVPh 2.0. Since there are three ODEs in
system (17)–(19) with an unknown σ to be determined, we have NumEQ = 3 and
TypeEQ=2. The system is input as

TypeEQ = 2;

NumEQ = 3;

f[1,z_,{f_,g_,s_},sigma_] :=

D[f,{z,2}]+Gr*Pr*g-Nr*s+sigma;

f[2,z_,{f_,g_,s_},sigma_] :=

D[g,{z,2}]+Nb*D[g,z]*D[s,z]+Nt*(D[g,z])^2-f;

f[3,z_,{f_,g_,s_},sigma_] :=

D[s,{z,2}]+Nt/Nb*D[f,{z,2}]-Le*f;

The seven boundary conditions, including the additional condition (21), are
defined as

NumBC = 7;

BC[1,z_,{f_,g_,s_}] :=f/.z->-1;

BC[2,z_,{f_,g_,s_}] :=f/.z->1;

BC[3,z_,{f_,g_,s_}] :=g/.z->-1;

BC[4,z_,{f_,g_,s_}] :=g/.z->1;

BC[5,z_,{f_,g_,s_}] :=s/.z->-1;

BC[6,z_,{f_,g_,s_}] :=s/.z->1;

BC[7,z_,{f_,g_,s_}] :=Integrate[f,{z,0,1}]-Ra*Pr;
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Now let us input the solution intervals

zL[1] = -1; zR[1] = 1;

zL[2] = -1; zR[2] = 1;

zL[3] = -1; zR[3] = 1;

Since all the solution intervals are in finite intervals, we do not have to specify
the integral interval to compute the squared residual error.

The initial guesses are chosen as U0 = ϵ1−3(−25+ϵ1)z
2/2+5(−15+2ϵ1)z

4/2,
θ0 = ϵ2(1 − z2) and ϕ0 = ϵ3(1 − z2), where ϵ1, ϵ2 and ϵ3 are constants to be
optimized. They are input as

U[1,0]=eps1-3/2*(-25+4eps1)z^2+5/2*(-15+2eps1)*z^4;

U[2,0]=eps2*(1-z^2);

U[3,0]=eps3*(1-z^2);

The auxiliary linear operators are chosen as L1 = L2 = L3 = ∂2

∂Y 2 . They are
defined as

L[1, u_] := D[u, {z, 2}];

L[2, u_] := D[u, {z, 2}];

L[3, u_] := D[u, {z, 2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators.

Without loss of generality, let us consider the case when Nr = 3/20, Nt =
Nb = 1/20, Le = 10, Gr = 5, Pr = 1 and Re = 5. These physical parameters
are input as

Nr = 3/20; Nt = 1/20;

Nb = 1/20; Le = 10;

Gr = 5; Pr = 1;

Ra = 5;

At this time, we have input all the data for this problem, except the converge-
nce-control parameters c0[k], eps1, eps2 and eps3. We minimize the squared
residual error of the 3th-order approximations to get the optimal values by the
module GetOptiVar as follows

c0[1] = c0[2] = c0[3] = h;

GetOptiVar[3, {}, {eps1, eps2, eps3, h}];

Note that we put constraints c0[1]=c0[2]=c0[3] on c0[1], c0[2] and c0[3]

to simplify the computation. There is no constraint on eps1, eps2 and eps3.
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After some computation, we get optimal values for all the convergence-
control parameters c0[1] = c0[2] = c0[3] ≈ −0.769452, eps1 ≈ 7.56408,
eps2 ≈ −2.58887 and eps3 ≈ −30.0044. Now we can use

BVPh[1,10]

to get the 10th-order approximation.
If we are not satisfied with the accuracy of the 10th-order approximation,

we can use BVPh[11,20] to get 20th-order approximation or higher order ap-
proximation. The 20th-order approximations of U , θ and ϕ are stored in
U[1,20], U[2,20] and U[3,20], the 20th-order approximation of σ is stored in
Lambda[19], while the corresponding squared residual error is ErrTotal[20].
Lambda[19] is about 18.272555944, which is the same with Xu’s result.10 The
20th-order approximations are plotted in Fig. 8. The total error of the system
for every two order of approximations are plotted in Fig. 9.
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Fig. 8: The curve of U (solid), θ (dashed) and ϕ(z) (dot dashed) for Example
3.
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Fig. 9: Total error vs. order of approximation for Example 3.
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