
Example 4: a system of ODEs in different inter-
vals

Consider a two-phase flow11

(i) Region 1
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dy2
+
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(ii) Region 2
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subject to

u1(1) = 1, θ1(1) = 1, (26)

u1(0) = u2(0), θ1(0) = θ2(0), (27)

u′
1(0) =

λ

h
u′
2(0), θ

′
1(0) =

λT

h
θ′2(0), (28)

u2(−1) = 0, θ2(−1) = 0, (29)

where Gr is the Grashof number, Ec is the Eckert number, Pr is the Prandtl
number, Re is the Reynolds number, M is the Hartmann number and P is the
dimensionless pressure gradient. This model describes a two-fluid magnetohy-
drodynamic Poiseuille-Couette flow and heat transfer in an inclined channel.
Umavathi11 investigate this model analytically by regular perturbation method
and numerically by finite difference technique.

The BVPh 2.0 can solve this problem (22)–(29) directly without difficulty.
Since all the parameters in the system will be given, we have NumEQ = 4 and
TypeEQ=1. The system is input as

TypeEQ = 1;

NumEQ = 4;

f[1,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[u1, {z, 2}]+ Gr/Ra*Sin[phi]*s1 - P ;

f[2,z_,{u1_,s1_,u2_,s2_},Lambda_]:=

D[s1, {z, 2}] + Pr*Ec*(D[s1, z])^2;

f[3,z_,{u1_,s1_,u2_,s2_},Lambda_]:=D[u2,{z, 2}]-h^2/lamb*P

+Gr/Ra*Sin[phi]*n*b*h^2/lamb*s2-M^2*h^2/lamb*u2;

f[4,z_,{u1_,s1_,u2_,s2_},lambda_]:=D[s2,{z,2}]

+Pr*Ec*lamb/lambT*D[u2,z]^2+Pr*Ec*h^2/lambT*M^2*u2^2;
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The eight boundary conditions (26)–(29) are defined as

NumBC=8;

BC[1,z_,{u1_,s1_,u2_,s2_}]:=(u1-1)/.z->1;

BC[2,z_,{u1_,s1_,u2_,s2_}]:=(u1-u2)/.z->0;

BC[3,z_,{u1_,s1_,u2_,s2_}]:=u2/.z->-1;

BC[4,z_,{u1_,s1_,u2_,s2_}]:=(D[u1,z]-D[u2,z]*lamb/h)/.z->0;

BC[5,z_,{u1_,s1_,u2_,s2_}]:=(s1-1)/.z->1;

BC[6,z_,{u1_,s1_,u2_,s2_}]:=(s1-s2)/.z->0;

BC[7,z_,{u1_,s1_,u2_,s2_}]:=s2/.z->-1;

BC[8,z_,{u1_,s1_,u2_,s2_}]:=(D[s1,z]-D[s2,z]*lambT/h)/.z->0;

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1; (* u1 *)

zL[2] = 0; zR[2] = 1; (* s1 *)

zL[3] = -1; zR[3] = 0; (* u2 *)

zL[4] = -1; zR[4] = 0; (* s2 *)

Note that the solution intervals are not the same. Since all the solution intervals
are in finite intervals, we do not have to specify the integral interval to compute
the squared residual error.

The initial guesses are chosen as u1,0 = λ
h (z−z2)+1, θ1,0 = zλT

h +(1− λT

h )z2,
u2,0 = 1 + z and θ2,0 = z + z2. They are input as

U[1, 0] = (z - z^2)*lamb/h+1; (* u1 *)

U[2, 0] = z*lambT/h +(1-lambT/h)*z^2; (* s1 *)

U[3, 0] = 1 + z; (* u2 *)

U[4, 0] = z^2 + z; (* s2 *)

The auxiliary linear operators are chosen as L1 = L2 = L3 = L4 = ∂2

∂y2 .
They are defined as

L[1,u_]:=D[u,{z,2}];

L[2,u_]:=D[u,{z,2}];

L[3,u_]:=D[u,{z,2}];

L[4,u_]:=D[u,{z,2}];

Note that we use the delayed assignment SetDelayed(:=) to define these linear
operators and z is the independent variable in the package.

Without loss of generality, let us consider the case when Pr = 7/10, Ec =
1/100, P = −5, b = 1, n = 1, Re = 1, M = 2, Gr = 5, h = 1, λ = 1, λT = 1,
and ϕ = π/6. These physical parameters are input as
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P = -5; b = 1;

n = 1; Ra = 1;

M = 2; Gr = 5;

lamb = 1; lambT = 1;

h = 1; phi = Pi/6;

Pr = 7/10; Ec = 1/100;

At this time, we have input all the data for this problem, except the converge-
nce-control parameters c0[k]. We minimize the squared residual error of the
4th-order approximations to obtain optimal values for c0[k] by the command

GetOptiVar[4,{},{c0[1],c0[2],c0[3],c0[4]}];

Note that the second parameter of GetOptiVar is a empty list, which means
that we give no constraints on the convergence-control parameters c0[k].

After some time , we obtain the optimal values for c0[k], which reads c0[1]
≈ −0.898166, c0[2] ≈ −0.946828, c0[3] ≈ −0.780946 and c0[4] ≈ −1.12363.
Then we call the main module BVPh to get the 30th-order approximations

BVPh[1, 30];

The 30th-order approximations for u1, θ1, u2, θ2 are stored in U[1,30], U[2,30],
U[3,30] and U[4,30], respectively, while the corresponding squared residual
error is ErrTotal[30]. The 30th-order approximations are plotted in Fig. 10.
The value of θ(y) agrees with Umavathi’s result11 (black dots), as shown in
Fig. 10. The 30th-order approximation of θ(y) gives the heat transfer rate
Nu+ = θ′1(1) = 0.8860625 and Nu− = θ′2(1) = 1.122312, which agrees with
Nu+ = 0.88606 and Nu− = 1.12230 in Umavathi’s11 Table 3.

The total error of the system for every two order of approximations is plotted
in Fig. 11.
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Fig. 10: The curve of u(y) (solid) and θ(y) (dashed) for Example 4. The black
dots are the values for θ(y) obtained by Umavathi.11
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Fig. 11: Total error vs. order of approximation for Example 4.
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