
Example 5: iterative solutions of the Gelfand e-
quation

If the problem is defined in a finite interval, the BVPh 1.0 can solve it using an
iterative method. The BVPh 2.0 has inherited this feature. However, there are
some minor differences in the input.

Consider the Gelfand equation12–14

u′′ + (K − 1)
u′

z
+ λeu = 0, u′(0) = u(1) = 0, (30)

where the prime denotes the differentiation with respect to z, K ≥ 1 is a con-
stant, u(z) and λ denote eigenfunction and eigenvalue, respectively. Following
Liao6 , an additional boundary condition

u(0) = A (31)

is added to distinguish different eigenfunctions.
To solve this problem by BVPh 2.0, we have to input the differential equa-

tions, boundary conditions and initial guesses. Since the problem is a single
ODE with an unknown λ to be determined, we set NumEQ = 1 and TypeEQ=2.
The differential equation can be coded as follows

TypeEQ = 2;

NumEQ = 1;

f[1,z_,{u_},lambda_] :=

D[u,{z,2}] +(K-1)*D[u,z]/z+lambda*Exp[u];

The three boundary conditions, including the additional condition (31), are
defined as

NumBC = 3;

BC[1, z_, {u_}] := (u-A)/. z -> 0;

BC[2, z_, {u_}] := D[u,z]/. z -> 0;

BC[3, z_, {u_}] := u /. z -> 1;

Now let us input the solution intervals

zL[1] = 0; zR[1] = 1;

Since the solution interval is finite, we do not have to specify the integral interval
to compute the squared residual error.

The initial guess is chosen as U0 = A
2 [1 + cos(πz)], which is input as

U[1,0] = A/2*(1 + Cos[Pi*z]);
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The auxiliary linear operator is chosen as L = ∂2

∂z2 +
(
π
a

)2
, which is defined

as

L[1,f_] := D[f,{z,2}]+Pi^2*f;

Note that we use the delayed assignment SetDelayed(:=) to define the linear
operator.

Without loss of generality, let us consider the case when A = 1 and K = 2.
The physical parameters are input as

K = 2; A = 1;

Because we want to approximate the right-hand sides using the hybrid-base
function and use an iterative approach to get the approximations, the control
parameters in BVPh 2.0 are modified to

TypeL = 2;

HYBRID = 1; (* hybrid-base functions *)

TypeBase = 2; (* even Fourier series *)

ApproxQ = 1;

Ntruncated = 30;

Here TypeL=2, HYBRID=1 and ApproxQ=1 together mean that the right-hand side
term of all high-order deformation equations is approximated by the hybrid-base
approximations. TypeBase=2 means the even Fourier series is used (TypeBase=1
also applies to this problem). Ntruncated=20 means Nt = 30.

At this time, we have input all the data for this problem, except the converge-
nce-control parameter c0[1]. To get optimal c0[1], we minimize the squared
residual error of the 6th-order approximations. This is done in BVPh 2.0 by
calling the function GetOptiVar

GetOptiVar[6, {}, {c0[1]}];

After some computation, we get the optimal value for the convergence-control
parameter c0[1]= −0.522418 . Now we can use the 3rd-order iteration HAM
approach

iter[1,6,3]

to get the desired approximation. Here 6 means the iteration times. After about
40 seconds, the 6th iteration gives the eigenvalue 1.90921, which is the same
with Liao’s result.6 The kth iteration approximations of u and λ are stored
in V[1,k], and LAMBDA[k], while the corresponding squared residual error is
stored in ERRTotal[k]. The 6th iteration approximation is plotted in Fig. 12
by
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Plot[V[1,6],{z,0,1},AxesLabel->{"z", "u(z)"}]

The total error for each iteration is plotted in Fig. 13 by

ListLogPlot[Table[{i, ERRTotal[i]}, {i, 1, 6}],

PlotRange->{{1,6},{10^-10,0.01}},Joined->True, Mesh->All,

AxesLabel->{"m","error"}]
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Fig. 12: The curve of the eigenfunction u(z) corresponding to the eigenvalue
λ = 1.90921 when A = 1 and K = 2 for Example 5.

1 2 3 4 5 6
m10-10

10-8

10-6

10-4

0.01
error

Fig. 13: Total error for each iteration vs. iteration times m for Example 5.
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