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of Nonlinear Differential Equations

By S. Liao and Y. Tan

Based on homotopy, which is a basic concept in topology, a general analytic
method (namely the homotopy analysis method) is proposed to obtain series
solutions of nonlinear differential equations. Different from perturbation
techniques, this approach is independent of small/large physical parameters.
Besides, different from all previous analytic methods, it provides us with a
simple way to adjust and control the convergence of solution series. Especially,
it provides us with great freedom to replace a nonlinear differential equation
of order n into an infinite number of linear differential equations of order k,
where the order k is even unnecessary to be equal to the order n. In this paper,
a nonlinear oscillation problem is used as example to describe the basic ideas
of the homotopy analysis method. We illustrate that the second-order nonlinear
oscillation equation can be replaced by an infinite number of (2κ)th-order
linear differential equations, where κ ≥ 1 can be any a positive integer. Then,
the homotopy analysis method is further applied to solve a high-dimensional
nonlinear differential equation with strong nonlinearity, i.e., the Gelfand
equation. We illustrate that the second-order two or three-dimensional nonlinear
Gelfand equation can be replaced by an infinite number of the fourth or
sixth-order linear differential equations, respectively. In this way, it might be
greatly simplified to solve some nonlinear problems, as illustrated in this
paper. All of our series solutions agree well with numerical results. This paper
illustrates that we might have much larger freedom and flexibility to solve
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nonlinear problems than we thought traditionally. It may keep us an open mind
when solving nonlinear problems, and might bring forward some new and
interesting mathematical problems to study.

1. Introduction

Generally speaking, it is easy to solve a linear differential equation. For
example, let us consider the linear differential equation:

u′′(t) + λ u(t) = 0, u(0) = 1, u′(0) = 0, (1)

where λ ∈ (−∞, +∞) is a constant. Obviously, for different values of λ, the
linear equation u′′(t) + λ u(t) = 0 has different types of solutions, i.e.,

u(t) = C1 exp(
√

|λ|t) + C2 exp(−
√

|λ|t), when λ < 0, (2)

u(t) = C1 + C2t, when λ = 0, (3)

u(t) = C1 cos(
√

λt) + C2 sin(
√

λt), when λ > 0, (4)

where C1 and C2 are coefficients to be determined by the two initial conditions.
So, for different value of λ, Equation (1) has different types of solutions:

u(t) =

⎧⎪⎨
⎪⎩

cosh(
√|λ|t), when λ < 0,

1, when λ = 0,

cos(
√

λt), when λ > 0.

(5)

Here, we emphasize that, the character of the solution u(t) (i.e., the kernel) of
the linear differential equation (1) depends strongly upon the value of λ: it is
unbounded when λ < 0, but is periodic when λ > 0.

However, it is much more difficult to analytically solve a nonlinear differential
equation. Very few nonlinear problems have simple, closed-form solutions.
In most cases, solutions of nonlinear differential equations can be expressed
only by means of an infinite series. Up to now, there are some well-known
analytic techniques for nonlinear problems, such as perturbation techniques
[1–3], Adomian’s decomposition method [4–9], the δ-expansion method [10,
11], Lyapunov’s artificial small parameter method [12], and so on. All of these
perturbation and nonperturbation techniques have the same characteristic: a
nonlinear differential equation Au = 0, where A is a nonlinear operator, is
replaced by an infinite number of linear subproblems governed by the linear
differential equation

Lun = fn(u0, u1, u2, . . . , un−1), (6)
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whereL is a linear operator that is dependent upon the original nonlinear equation
and the used perturbation or nonperturbation method, and the right-hand side
term f n is dependent upon the known u0, u1, u2, . . . , un−1. And the solutions of
the first M linear subproblems are used to give the M th-order approximation

u ≈ u0 +
M∑

k=1

ck uk,

where ck is a constant.1 In general, a nonlinear equation Au = 0 contains linear
and nonlinear parts, i.e., Au = L0u + N0u, where L0 and N0 are linear and
nonlinear operators, respectively. Then, it is natural for us to ask the following
questions:

1. Must the linear operator L in (6) for the linear subproblems have a close
relationship with the linear operator L0 appeared in the original nonlinear
equation L0u + N0u = 0?

2. Must the linear operator L in (6) for the linear subproblems have the same
order as that of the original nonlinear operator A?

It is hard for us to answer the above questions in general. In this paper,
we investigate these interesting questions by some examples. Without loss of
generality, let us first consider a nonlinear oscillation, governed by

u′′(t) + λu(t) + εu3(t) = 0, u(0) = 1, u′(0) = 0, (7)

where λ ∈ (−∞, +∞) and ε ≥ 0 are physical parameters. Mathematically, the
above equation contains the linear and nonlinear parts:

L0u = u′′ + λu, N0u = εu3.

Physically, the resilience of the oscillator is directly proportional to −(λu +
εu3). When λ ≥ 0 and ε > 0, there is one unique equilibrium point u = 0.
However, when λ < 0 and ε > 0, there are two equilibrium points u = 0 and
u = √|λ/ε|. From the physical points of view, the sum of the kinetic and
potential energy of the oscillator keeps the same, therefore it is clear that the
oscillation motion is periodic, no matter λ is positive or negative. Thus, from
physical points of view, it is easy to know that u(t) is periodic, even if we do
not directly solve Equation (7).

Unfortunately, many traditional analytic methods can not give periodic
solutions of Equation (7) for all possible values of λ. For example, let us
use the straightforward perturbation technique to it. Regarding ε as a small
parameter, one can expand u(t) as follows

1If perturbation method is used, ck is a function of perturbation quantity.
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u(t) = u0(t) + u1(t)ε + u2(t)ε2 + · · · .

Substituting it into Equation (7) and equating the coefficients of the like power
of ε, one has an infinite number of linear differential equations:

u′′
0(t) + λu0(t) = 0, u0(0) = 1, u′

0(0) = 0, (8)

u′′
n(t) + λun(t) = −

n−1∑
i=0

ui

n−1−i∑
j=0

u j un−1−i− j , un(0) = 0, u′
n(0) = 0, (9)

In this way, one replaces the second-order nonlinear differential equation (7)
by an infinite number of the second-order linear differential equations (8) or
(9). All of these linear equations have the same second-order linear operator

Lu = u′′ + λu = L0u. (10)

Obviously, for different value of λ, one has different types of the initial
approximation u0(t) governed by (8), i.e.,

u0(t) =

⎧⎪⎨
⎪⎩

cosh(
√|λ|t), when λ < 0,

1, when λ = 0,

cos(
√

λt), when λ > 0.

(11)

Thus, the solutions of Equation (9) have different types of expressions for λ <

0, λ = 0 and λ > 0, respectively. For example, when λ = −9/4 and ε = 1, the
second-order perturbation approximation reads

u(t) ≈
(

t2

64
+ 5t

36
+ 5279

10368

)
e−3t/2 −

(
t

192
+ 1

108

)
e−9t/2 + 1

10368
e−15t/2

+
(

t2

64
− 5t

36
+ 5279

10368

)
e3t/2 +

(
t

192
− 1

108

)
e9t/2 + 1

10368
e15t/2.

When λ = 0 and ε = 1, the second-order perturbation approximation is

u(t) ≈ 1 − t2

2
+ t4

8
.

When λ = 9/4 and ε = 1, the second-order approximation reads

u(t) ≈
(

5135

5184
− t2

32

)
cos

(
3t

2

)
+ 1

108
cos

(
9t

2

)
+ 1

5184
cos

(
15t

2

)

− 2t

9
sin

(
3t

2

)
− t

96
sin

(
9t

2

)
.

In general, when λ < 0, the straightforward perturbation approximations of
Equation (7) have the form
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u(t) =
M∑

m=0

amtm
N∑

n=1

(
bne−n

√|λ|t + cnen
√|λ|t), (12)

with the property |u(+∞)| → +∞. When λ= 0, the corresponding perturbation
approximation is expressed by

u(t) =
N∑

n=0

ant2n, (13)

whose convergence radius is finite in most cases. When λ > 0, the corresponding
perturbation approximation reads

u(t) =
M∑

m=0

amtm
N∑

n=1

[bn cos(n
√

λt) + cn sin(n
√

λt)], (14)

which contains the so-called secular terms such as t sin(
√

λt) that tends to
infinity as t → +∞. From above three types of the straightforward perturbation
approximations, it is natural for us to guess that the solution of Equation (7)
might be unbounded when λ < 0 or λ > 0. However, from the physical points
of view, the solution of Equation (7) is periodic for all possible values of λ ∈
(−∞, +∞) and ε > 0, as shown in Figures 1 to 3 for ε = 1 and λ = −9/4, 0
and 9/4, respectively. Note that, these perturbation approximations are valid
only for small t, as shown in Figures 1 and 3. Note also that, by means of
Adomian’s decomposition method [4–9], one obtains exactly the same results as
the perturbation ones. Obviously, for the considered example, L = L0 can not
give us good approximations, especially when λ ≤ 0. So, this simple example
clearly indicates that, for a nonlinear differential equation L0u + N0u = 0,
where L0 and N0 are, respectively, linear and nonlinear operators, the linear
operator L0 might completely mislead us: L0 might provide us wrong
information, and therefore is not so important as we thought. This is mainly
because the character of the solution of the linear equation L0u = 0 might be
completely different from the characters of the solution of the fully nonlinear
ones L0u + N0u = 0. Therefore, it seems unnecessary that the linear operator
L in the linear subproblems (6) should have a close relationship with L0 in the
original nonlinear equation L0u + N0u = 0. In other words, we should have
great freedom to choose the linear operator L of the linear subproblems (6).

Unfortunately, all of the current analytic techniques for nonlinear problems,
such as perturbation techniques [1–3], Adomian’s decomposition method [4–9],
the δ-expansion method [10, 11], Lyapunov’s artificial small parameter method
[12], and so on, can not provide us with such kind of freedom to choose the
linear operator L of linear subproblems.
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Figure 1. Comparison of the numerical solution with the 10th-order perturbation approximation

and the third-order HAM approximation (h̄ = −1/4) of Equation (7) when λ = −9/4, ε = 1.

2. The homotopy analysis method

It is well known that a real function can be expressed by some different basis
functions. For example, let us consider the initial value problem

u′(t) + u2(t) = 1, u(0) = 0,

which has the closed-form solution

u(t) = tanh(t).

Using polynomials as basis function, one has

tanh(t) ∼ t − t3

3
+ 2t5

5
− 17t7

315
+ · · · ,
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Figure 2. Comparison of the numerical solution with the 10th-order perturbation approximation

and the fifth-order HAM approximation (h̄ = −1) of Equation (7) when λ = 0, ε = 1.

which converges to the exact solution u(t) = tanh (t) only in a small region 0 ≤
t < 3/2. However, by means of exponential functions as basis function, one has

tanh(t) ∼ 1 + lim
m→+∞

[
2

m∑
n=1

(−1)ne−2nt + (−1)m+1e−(2m+1)t

]
,

which converges to the exact solution u(t) = tanh (t) in the whole region
0 ≤ t < +∞. Note that, even the first few terms of above expression give
accurate approximation. For example, when m = 2, it gives

1 − 2e−2t + 2e−4t − e−5t ,

which agrees well with the exact solution tanh (t) in the whole region 0 ≤ t <

+∞. For details, please refer to Liao ([13], Chapter 2). Therefore, one
can get better approximations by means of better basis functions. In other
words, solutions of nonlinear differential equations can be approximated
more efficiently by means of better basis functions. For example, a periodic
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Figure 3. Comparison of the numerical solution with the 10th-order perturbation approximation

and the third-order HAM approximation (h̄ = −1/3) when λ = 9/4, ε = 1.

solution is expressed more efficiently by periodic basis functions than by
polynomials.

It is well known that basis functions have close relationships with linear
operators. Thus, it is very important to choose the linear operator L in the
subproblems (6), because L determines the basis functions of the solution
un . For example, the linear operator Lu = u′′ + λu determines the basis
functions of the above-mentioned approximations of Equation (7), given by
the straightforward perturbation method [1–3] and Adomian’s decomposition
method [4–9]. When λ < 0, the straightforward perturbation approximations
of Equation (7) are expressed by the set of basis functions{

tme−n
√|λ|t , tmen

√|λ|t | m > 0, n ≥ 1
}
. (15)

When λ = 0, it is expressed by the set of basis functions

{t2n | n ≥ 0}. (16)
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When λ > 0, the straightforward perturbation approximations of Equation (7)
are expressed by the set of basis functions

{tm cos(n
√

λt), tm sin(n
√

λt) | m ≥ 0, n ≥ 1}. (17)

Unfortunately, all of above basis functions are not periodic, and thus do not
match the principal character of Equation (7), whose solution is periodic for
all possible values of λ ∈ (−∞, +∞) and ε > 0. Obviously, it is much better
to express a periodic solution by the set of periodic basis functions

{cos(nωt), sin(nωt) | n ≥ 0} , (18)

where ω = 2π/T is the frequency, and T is the period of the solution.
Certainly, for Equation (7), the periodic basis functions (18) are much
better than those defined by (15)–(17). This example clearly verifies that, in
principle, choosing the linear operator L in the linear subproblems (6) is to
determine the basis functions of the solution of the original nonlinear equation
Au = 0. It is a pity that the traditional analytic techniques for nonlinear
problems, such as perturbation techniques [1–3], Adomian’s decomposition
method [4–9], the δ-expansion method [10, 11], and so on, have no freedom
to choose basis functions of approximate solutions, mainly because these
methods have no freedom to choose the corresponding linear operator L of the
related subproblems. Without this kind of freedom, approximations given by
these analytic approaches are in general strongly dependent upon the value
of physical parameters, as shown in Figures 1–3, for examples. Besides, all
of these traditional methods can not provide a convenient way to adjust and
control the convergence of approximation solutions.

2.1. Basic ideas

The homotopy is a basic concept in topology [14, 15], which is often
applied to investigate the existence and uniqueness of solutions by pure
mathematicians. Based on homotopy, some powerful numerical techniques,
such as the homotopy continuation method [16–22] and the continuation
method [23, 24] are developed, which are widely used to get numerical
solutions of nonlinear problems. Based on the concept of homotopy, and with
the rapid development of computer techniques and symbolic computation
software, an analytical method for strongly nonlinear problems, namely the
homotopy analysis method (HAM) [13, 25–29], has been developed since
1992. Different from perturbation techniques [1–3], the homotopy analysis
method is independent of any small parameters at all. Besides, it provides us
with a simple way to ensure the convergence of solution series, so that we
can always get accurate enough approximations. Furthermore, as proved by
Liao [13, 27], the homotopy analysis method logically contains the so-called
nonperturbation methods such as Adomian’s decomposition method [4–9], the
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δ-expansion method [10, 11], Lyapunov’s artificial small parameter method
[12], and so on. Using the relationship between the homotopy analysis method
and Adomian’s decomposition method, Allan [30] investigated the accuracy
of approximations given by the Adomian’s decomposition method. Currently,
Hayat et al. [31], Sajid et al. [32], and Abbasbandy [33–35] pointed out that
the so-called “homotopy perturbation method” [36] proposed in 1999 is also a
special case of the homotopy analysis method [13, 25] propounded in 1992.
Thus, the homotopy analysis method is rather general. More importantly, it
provides us with great freedom to choose better basis functions to approximate
nonlinear problems. The homotopy analysis method has been successfully
applied to many nonlinear problems in science and engineering, such as the
similarity boundary-layer flows [27, 37–39], nonlinear heat transfer [40, 33,
35], nonlinear evaluation equations [41], nonlinear waves [34], viscous flows
of non-Newtonian fluid [31, 32], Thomas–Fermi atom model [13], Volterra’s
population model [13], and so on. It has been applied in many fields of
researches. For example, Zhu [42, 43] applied the HAM to give, for the first
time, an explicit series solution of the famous Black–Scholes type equation
in finance for American put option, which is a system of nonlinear PDEs
with an unknown moving boundary. Besides, the HAM has been successfully
applied to solve some PDEs in fluid mechanics and heat transfer, such as
the unsteady boundary-layer viscous flows [28], the unsteady nonlinear heat
transfer problem [44], and so on. Especially, the HAM has been successfully
applied to find a few new solutions of some nonlinear problems [29, 40], and
these new solutions have been never reported even by means of numerical
techniques. All of these verify the great potential and validity of the HAM for
strongly nonlinear problems in science and engineering.

In this section, we use the nonlinear oscillation problem (7) as an example
to describe the basic ideas of the HAM and to illustrate its great freedom on
the choice of basis functions. As mentioned before, from the physical points of
view, the solution of Equation (7) is periodic for all possible values of λ ∈
(−∞, +∞) and ε > 0. So, it is better and more efficient to use a set of periodic
basis functions to approximate it. Let ω and T = 2π/ω denote the frequency
and the period of the solution u(t), respectively. Using the transformation

τ = ωt,

Equation (7) becomes

γ u′′(τ ) + λu(τ ) + εu3(τ ) = 0, u(0) = 1, u′(0) = 0, (19)

where the frequency square γ = ω2 is unknown and is a function of both ε

and λ. Note that, although the frequency square γ is unknown, it is now very
clear that u(τ ) is a function with the known period 2π , i.e., u(τ ) = u(τ + 2π )
holds for any τ . Thus, considering the initial condition u′(0) = 0, u(τ ) can be
expressed by the periodic basis functions

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条



Series Solutions of Nonlinear Differential Equations 307

{cos nτ | n ≥ 0} (20)

in the form

u(τ ) =
+∞∑
n=0

an cos(nτ ). (21)

This provides us the so-called solution expression of u(τ ). Our aim is to give
a series solution of Equation (19), which must be expressed in the above
expression.

Let u0(τ ) denote the initial approximation of u(τ ). According to the solution
expression (21) and considering the initial conditions in (19), it is natural to
choose

u0(τ ) = δ + (1 − δ) cos τ, (22)

where the parameter δ is determined later. Note that u0(τ ) satisfies the initial
conditions, i.e., u0(0) = 1 and u0

′(0) = 0.
Let L denote an auxiliary linear operator, which will be chosen later.

Obviously, u = 0 is a solution of the linear equation Lu = 0, and thus belongs
to the kernel of the linear operator L. Besides, let h̄ denote a nonzero auxiliary
parameter, q ∈ [0, 1] an embedding parameter, respectively. For the sake of
simplicity, we define the nonlinear operator

N [φ(τ ; q), �(q)] = �(q)φ′′(τ ; q) + λφ(τ ; q) + εφ3(τ ; q), (23)

where the prime denotes the differentiation with respect to τ , φ(τ ; q) is a
mapping of u(τ ), �(q) is a kind of mapping of γ , respectively. Then, we
construct a homotopy

H[φ(τ ; q), q] := (1 − q)L [φ(τ ; q) − u0(τ )] −h̄qN [φ(τ ; q), �(q)]. (24)

When q = 0 and q = 1, we have, respectively,

H[φ(τ ; 0), 0] := L [φ(τ ; 0) − u0(τ )] , when q = 0, (25)

H[φ(τ ; 1), 1] := −h̄N [φ(τ ; 1), �(1)], when q = 1. (26)

Thus, as q increases from 0 to 1, the homotopy H[φ(τ ; q), �(q)] continuously
changes (or deforms) from L[φ(τ ; 0) − u0(τ )] to −h̄N [φ(τ ; 1), �(1)]. Thus,
enforcing

H[φ(τ ; q), �(q)] = 0,

we have, from (24), a one-parameter family of differential equations in the
embedding parameter q ∈ [0, 1], i.e.,

(1 − q)L [φ(τ ; q) − u0(τ )] = h̄qN [φ(τ ; q), �(q)], (27)
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subject to the initial conditions

φ(0; q) = 1, φ′(0; q) = 0, (28)

where the prime denotes the differentiation with respect to τ , and the nonlinear
operator N is defined by (23).

Note that, the solutions φ(τ ; q) and �(q) of Equations (27) and (28) are
also dependent upon q ∈ [0, 1]. Especially, when q = 0, it holds

L[φ(τ ; 0) − u0(τ )] = 0, φ(0; 0) = 1, φ′(0; 0) = 0. (29)

According to the linear property of L, i.e., L[0] = 0, and using the fact that
u0(τ ) satisfies the initial conditions, it is obvious that

φ(τ ; 0) = u0(τ ) = δ + (1 − δ) cos τ. (30)

When q = 1, because h̄ �= 0, Equations (27) and (28) are equivalent to

N [φ(τ ; 1), �(1)] = 0, φ(0; 1) = 1, φ′(0; 1) = 0, (31)

which are exactly the same as the original equation (19), provided

φ(τ ; 1) = u(τ ), �(1) = γ. (32)

So, as the embedding parameter q ∈ [0, 1] increases from 0 to 1, φ(τ ; q) varies
continuously from the initial guess u0(τ ) to the solution u(τ ) of Equation (19),
so does �(q) from its initial guess γ 0 to the frequency square γ = ω2 of the
solution u(t) of Equation (7). Note that γ 0 is unknown right now and will be
determined later. This kind of continuous variation is called deformation in
topology. So, we call Equations (27) and (28) the zeroth-order deformation
equations.

Note that φ(τ ; q) and �(q) depend on the embedding parameter q ∈ [0, 1],
and thus can be expanded in a power series in q as follows

φ(τ ; q) = u0(τ ) +
+∞∑
n=1

un(τ )qn, (33)

�(q) = γ0 +
+∞∑
n=1

γnqn, (34)

where

un(τ ) = 1

n!

∂nφ(τ ; q)

∂qn

∣∣∣∣
q=0

, γn = 1

n!

dn�(q)

dqn

∣∣∣∣
q=0

. (35)

Here, we use (30) and define γ 0 = �(0). Note that, according to the fundamental
theorems in calculus [45], un(τ ) and γ n are unique, and are completely
determined by the zeroth-order deformation equations (27) and (28).

According to (32), we get the solution of Equation (19) just at q = 1.
Therefore, it is important to ensure that the series (33) and (34) converge at
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q = 1. However, in most cases, a power series has a bounded convergence
radius. Fortunately, both φ(τ ; q) and �(q) are dependent upon not only the
embedding parameter q ∈ [0, 1] but also the auxiliary parameter h̄ and the
auxiliary linear operator L, because both of them also appear in the zeroth-order
deformation equation (27). More importantly, we have great freedom to choose
both h̄ and L. Thus, assuming that h̄ and L are properly chosen so that the
series (33) and (34) are convergent at q = 1, we have, using (32), the solution
series

u(τ ) = u0(τ ) +
+∞∑
n=1

un(τ ), (36)

γ = γ0 +
+∞∑
n=1

γn. (37)

According to Liao’s general proof ([13], Chapter 3), the above series must
converge to the exact solution of the nonlinear oscillation equation (7), as long
as they are not divergent.

For simplicity, define the vectors


um = {u0(τ ), u1(τ ), u2(τ ), . . . , um(τ )} , 
γm = {γ0, γ1, γ2, . . . , γm} .

According to the fundamental theorems in calculus [45], un(τ ) is unique, thus
the governing equation of un(τ ) is unique, too, and therefore can be derived
directly from the zeroth-order deformation equations (27) and (28). There are
two different ways to do so. Each of them gives the same results, as shown
below. First, differentiating Equations (27) and (28) n times with respect to q,
then dividing by n!, and finally setting q = 0, we have, using the definitions
(35) of un(τ ) and γ n , the so-called nth-order deformation equation

L[un(τ ) − χnun−1(τ )] = h̄Rn(
un−1, 
γn−1), (38)

subject to the initial conditions

un(0) = 0, u′
n(0) = 0, (39)

where

Rn(
un−1, 
γn−1)

= 1

(n − 1)!

{
∂n−1N [φ(τ ; q); �(q)]

∂qn−1

}∣∣∣∣
q=0

=
n−1∑
k=0

γku′′
n−1−k(τ ) + λun−1(τ ) + ε

n−1∑
k=0

un−1−k(τ )
k∑

j=0

uk− j (τ )u j (τ ), (40)
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and

χn =
{

0, n ≤ 1,

1, n > 1.
(41)

The detailed deduction of Equations (38) and (39) is given in Appendix A.
Alternatively, as pointed out by Hayat et al. [31], directly substituting (33) and
(34) into the zeroth-order deformation equations (27) and (28), and equating
the coefficients of the like power of q, one can get exactly the same equations as
(38) and (39). For details, please refer to Appendix B. This is mainly because,
due to the fundamental theorems in calculus [45], un(τ ) and γ n in the series
(33) and (34) are unique, and thus are certainly governed by the same equations.

Note that the high-order deformation equations (38) and (39) are linear.
Thus, we transfer the nonlinear differential equation (19) of order 2 into
infinite number of linear differential equations (38) and (39) with order k, the
order of the auxiliary linear operator L. It should be emphasized that, different
from perturbation techniques, such kind of transformation does not need any
small/large physical parameters. Besides, we have great freedom to choose the
auxiliary linear operator L so that L might be quite different from L0 and the
order k of L might be even not equal to 2, as illustrated in Section 2.2.

The freedom on the choice of the auxiliary linear operator L is very
important for us. Using this kind of freedom, we can express L in such a
general form of the mth-order linear operator:

Lu = u(m) + a1(τ )u(m−1) + · · · + am−1(τ )u′ + am(τ )u,

where u(k) denotes the kth differentiation of u(τ ) with respect to τ , a j (τ ) is a
real function to be determined. Here, the order m and the coefficients a j (τ ) ( j =
1, 2, 3, . . . , m) of the linear operator L are unknown, and should be determined
properly. Because the original nonlinear oscillation problem is governed by the
second-order equation (19), it is natural2 for us to choose m = 2, i.e.,

Lu = u′′ + a1(τ )u′ + a2(τ )u. (42)

Let w1(τ ), w2(τ ) denote the non-zero solutions of Lu = 0, and u∗
n(τ ) the

special solution of (38). Then, the general solution of Equation (38) reads

un(τ ) = χnun−1(τ ) + u∗
n(τ ) + C1w1(τ ) + C2w2(τ ), (43)

where C1, C2 are constant coefficients. Note that our aim is to give series
solutions with the known period 2π . So, w1(τ ) and w2(τ ) must be periodic
functions such as sin(nτ ) and cos(nτ ), where n is a positive integer. Obviously,
we should choose

2In fact, it is not so “natural” as one might think. We will show in the next subsection that one can use
(2κ)th-order linear operator L, defined by (57), to solve the same problem, where κ = 1, 2, 3, . . . .
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w1(τ ) = cos τ, w2(τ ) = sin τ.

Because w1(τ ) and w2(τ ) are solutions (i.e., kernel) of Lu = 0, it holds for
any non-zero constant coefficients C1 and C2 that

L[C1 cos τ + C2 sin τ ] = 0.

Then, using the above equation and the definition (42) of L, we have

{[a2(τ ) − 1] cos τ − a1(τ ) sin τ }C1 + {[a2(τ ) − 1] sin τ + a1(τ ) cos τ }C2 = 0.

(44)

The above equation holds for any coefficients C1, C2 and all τ ∈ [0, +∞), if
and only if

a1(τ ) = 0, a2(τ ) = 1. (45)

Substituting them into (42), we obtain the auxiliary linear operator

Lu = u′′ + u, (46)

which has the property

L[C1 cos τ + C2 sin τ ] = 0 (47)

for any constants C1 and C2. In other words, cos τ and sin τ belong to the
kernel of the auxiliary linear operator L. Then, the general solution of Equation
(38) reads

un(τ ) = χnun−1(τ ) + u∗
n(τ ) + C1 cos τ + C2 sin τ. (48)

Using the initial condition (39), we have

C1 = −χnun−1(0) − u∗
n(0), C2 = 0.

Thus, the solution of the nth-order deformation Equations (38) and (39) reads

un(τ ) = χnun−1(τ ) + u∗
n(τ ) − [

χnun−1(0) + u∗
n(0)

]
cos τ. (49)

How to get a special solution u∗
n(τ ) of Equations (38) and (39)? Note that

both of u∗
n(τ ) and γ n−1 are unknown, but we have only one governing equation

for u∗
n(τ ). So, one additional algebraic equation is needed to determine γ n−1.

To show how to get u∗
n(τ ) and γ n−1, let us consider the first-order equation

L[u1(τ )] = h̄ R1(u0), u1(0) = 0, u′
1(0) = 0,

where we have, using (22) and (40), that

R1(τ ) = γ0u′′
0(τ ) + λu0(τ ) + εu3

0(τ )

= A0 + A1 cos τ + A2 cos 2τ + A3 cos 3τ,
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in which A0, A1, A2 and A3 are constant coefficients, and

A0 =
(

δ

2

)
[2λ + ε(5δ2 − 6δ + 3)],

A1 =
(

δ − 1

4

) [
4γ0 − 4λ − ε(15δ2 − 6δ + 3)

]
.

According to the property (47), if A1 �= 0, then u1(τ ) contains the so-called
secular term τcosτ , which however is not periodic and thus disobeys the
solution expression (21). To avoid this, we had to enforce A1 = 0, which
provides us with one additional algebraic equation of γ 0, i.e.,

4γ0 − 4λ − ε(15δ2 − 6δ + 3) = 0,

whose solution is

γ0 = λ + 3ε

4
+ ε

4
(15δ2 − 6δ). (50)

Thereafter, it is easy to get the special solution

u∗
1(τ ) = A0 − A2

3
cos 2τ − A3

8
cos 3τ.

Then, substituting it into (49), we have

u1(τ ) = A0 −
(

A0 − A2

3
− A8

8

)
cos τ − A2

3
cos 2τ − A3

8
cos 3τ.

Similarly, we can solve γ n−1 and un(τ ) successively in the order n = 2, 3, 4, . . . .
Here, the key point is to ensure that un(τ ) must obey the solution expression

(21). In other words, the initial guess, the auxiliary linear operator, and so on,
must be chosen in such a way that the solutions of all high-order deformation
equations (38) and (39) can be expressed by the solution expression (21). This
idea is so important in the frame of the homotopy analysis method that it is
regarded as a fundamental rule, namely the rule of solution expression. For
details, please refer to Liao ([13], chapters 2 and 3).

Note that there is a unknown parameter δ in the initial guess u0(τ ), which
we also have freedom to choose. The first-order approximation reads

u(τ ) ≈ u0 + u1

= (δ + A0) −
(

A0 − A2

3
− A8

8
+ δ − 1

)
cos τ − A2

3
cos 2τ − A3

8
cos 3τ.

Obviously, at the first-order of approximation, we have the equilibrium point∫ 2π

0

u(τ ) dτ = A0 + δ.
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So, physically, δ can be regarded as the initial guess of the equilibrium point.
Assuming that δ is so properly chosen that no modification of equilibrium
point is needed at the first-order of approximation, i.e., A0 = 0, we have

δ =

⎧⎪⎪⎨
⎪⎪⎩

0, when λ ≥ −3ε/5,

1

5

[
3 +

√∣∣∣∣6 + 10λ

ε

∣∣∣∣
]

, when λ < −3ε/5.
(51)

The mth-order approximations are given by

u(τ ) ≈ u0(τ ) +
m∑

k=1

uk(τ ), (52)

γ ≈ γ0 +
m∑

k=1

γk . (53)

According to Liao’s general proof ([13], chapter 3), the series of γ converges to
the exact value of ω2 as long as it is not divergent. It should be emphasized that,
for given λ and ε, we still have freedom to choose the value of the auxiliary
parameter h̄. Because h̄ appears in the high-order deformation equation (38),
both of γ and u(τ ) are mathematically dependent upon h̄. However, physically,
for given λ and ε, there exists a unique value of γ = ω2, and thus all convergent
series of γ given by different values of h̄ should give the same result. For
example, let us consider the case of ε = 1 with three different values of λ, i.e.,
λ = −9/4, 0, 9/4, respectively. In each case, the series of γ indeed converges
to the same value in a finite region of h̄, as shown in Figure 4. Note that, each
curve has a horizontal part, which corresponds to the so-called valid region of
h̄: the corresponding series of γ converges to the exact value of ω2 if one
chooses a value of h̄ in such a region. The so-called h̄-curves of γ clearly
indicate the valid regions of h̄ for given λ and ε:

−0.4 < h̄ < 0, when λ = −9/4, ε = 1,

−2 < h̄ < 0, when λ = 0, ε = 1,

−0.6 < h̄ < 0, when λ = 9/4, ε = 1.

By means of choosing a proper value of h̄ in the corresponding valid region,
we get the convergent result of γ , as shown in Table 1, and further more,
the convergent series of the corresponding u(τ ), as shown in Figures 1–3.
Therefore, the auxiliary parameter h̄ indeed provides us with a simple way to
control and adjust the convergence of the solution series.

Here the auxiliary parameter h̄ plays a very important role: it ensures the
convergence of the solution series. As proved by Liao in general ([13], chapter 3),
some other techniques such as Adomian’s decomposition method [4], the
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Figure 4. The 10th-order approximation of γ versus h̄ when ε = 1 for different values of λ.

Solid line: λ = −9/4, Dashed line: λ = 0, Dash–dotted line: λ = 9/4.

Table 1
The HAM Approximation of γ = ω2 When ε = 1 for Different λ in Equation (7)

Approx.
order λ = −9/4, h̄ = −1/4 λ = 0, h̄ = −1 λ = 9/4, h̄ = −1/3

2 4.00785 0.72656 2.99219
4 3.92638 0.71885 2.99217
6 3.92676 0.71794 2.99217
8 3.92803 0.71780 2.99217
10 3.92781 0.71778 2.99217
12 3.92780 0.71777 2.99217
14 3.92781 0.71777 2.99217
16 3.92781 0.71777 2.99217
18 3.92781 0.71777 2.99217
20 3.92781 0.71777 2.99217
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δ-expansion method [10] and Lyapunov’s artificial small parameter method
[12] are only special cases of the homotopy analysis method when h̄ = −1.
Currently, Hayat et al. [31], Sajid et al. [32], and Abbasbandy [33–35] pointed
out that the so-called “homotopy perturbation method” [36] proposed in 1999
is also a special case of the homotopy analysis method (when h̄ = −1) [25, 13]
propounded in 1992. However, using h̄ = −1, one can not get convergent value
of γ = ω2 when ε = 1 and λ = ±9/4, as shown in Figure 4. So, although
choosing good basis functions is important, it is unfortunately not enough to
ensure the convergence of solution series, and thus the auxiliary parameter h̄ is
absolutely necessary. Therefore, it is the auxiliary parameter h̄ which provides
us with a simple way to ensure the convergence of the solution series.

To show the importance of the auxiliary parameter h̄, let us further consider
the convergence of γ = ω2 in case of λ = 0 with all possible values of ε, i.e.,
0 < ε < +∞. The corresponding 10th-order HAM approximation is

γ = 0.75ε + 0.234375ε2h̄ + 0.791016ε3h̄2 + 1.628723ε4h̄3 + 2.260265ε5h̄4

+ 2.202903ε6h̄5 + 1.522699ε7h̄6 + 0.735085ε8h̄7 + 0.236597ε9h̄8

+ 0.0457473ε10h̄9 + 0.00402753ε11h̄10. (54)

The above expression of γ contains the auxiliary parameter h̄. As a result, its
convergence region is dependent upon h̄: the convergence region of γ increases
as h̄ (h̄ < 0) increases and tends to zero, as shown in Figure 5. Note that the
auxiliary parameter h̄ is unnecessary to be a constant: h̄ can be a function of
physical parameters, such as ε and λ for this example. It is found that, when
h̄ = −(1 + ε)−1, even the second-order approximation of γ , i.e.,

γ = 3ε(128 + 248ε + 123ε2)

512(1 + ε)2
, (55)

agrees well with the numerical results in the whole region 0 < ε < +∞, as
shown in Figure 5. Thus, when λ = 0, we have a simple but rather accurate
approximation of the period of oscillation

T = 2π√
γ

= 32
√

2π (1 + ε)√
3ε(128 + 248ε + 123ε2)

, (56)

which is valid for all possible values of the physical parameter 0 < ε < +∞,
as shown in Figure 6. All of these indicate that, the auxiliary parameter h̄
indeed provides us with a simple way to ensure the convergence of solution
series. This is an obvious advantage of the homotopy analysis method over all
other perturbation and nonperturbation techniques. It is the essential reason
why the auxiliary parameter h̄ is introduced in the zeroth-order deformation
equation (27).

Note that even the second-order approximation (55) gives very good
approximation ofγ =ω2. In such kind of cases, like perturbation approximations,
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Figure 5. The curves of γ ∼ ε at the 10th-order approximation when λ = 0. Dashed line:

h̄ = −1; Dash–dotted line: h̄ = −1/3; Dash–dot–dotted line: h̄ = −1/10; Solid line: h̄ =
−1/(1 + ε); Filled circles: numerical results.

the first few terms of the HAM solution series can give rather accurate results.
However, different from perturbation approximations, the HAM result (55) is
valid for all possible parameter 0 < ε < +∞, and thus is independent of small
physical parameters.

In this section, we illustrate that the homotopy analysis method have the
following advantages:

1. Different from perturbation techniques, it is independent of small parameters.
2. Different from all other perturbation and non-perturbation methods, it

provides us with great freedom to choose the auxiliary linear operator so
that we can use better basis functions to approximate solutions of nonlinear
problems more efficiently.

3. Different from all other perturbation and non-perturbation methods, it
provides us with a simple way to ensure the convergence of solution series
by means of the auxiliary parameter h̄.
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Figure 6. The period T versus ε when λ = 0. Solid line: numerical result; Open circles:

HAM results given by (56); Filled circles: HAM results given by (64).

Here, we emphasize once again that, although choosing a set of good basis
functions is very important, it is unfortunately not enough to ensure the
convergence of solution series, and thus the auxiliary parameter h̄ is absolutely
necessary.

2.2. The order of the auxiliary linear operator L
In Section 2.1, we choose a second-order auxiliary linear operator Lu = u′′ + u,
mainly because Equation (19) of nonlinear oscillation is second-order. In other
words, the second-order nonlinear differential equation (19) is replaced by an
infinite number of the second-order linear subproblems governed by (38) and
(39): the order keeps the same.

The order of the auxiliary linear operator L of the linear subproblems must
be equal to that of the original nonlinear ones? If one employs traditional
methods, the answer seems to be out of question: yes. However, many of our
traditional thoughts and concepts have been proved to be wrong: one famous
example is Newton’s concept of the absolute time, which was replaced by
Einstein’s concept of the time–space. In this subsection, using Equation (19)
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as an example, we show that, against the traditional thoughts, the order of the
auxiliary linear operator L of the linear subproblems is unnecessary to be the
same as that of the original nonlinear ones.

Here, we use some auxiliary linear operators L of different orders, but keep
others (such as u0, γ 0 and δ, except h̄) the same. Let us consider a more
general expression of the auxiliary linear operator (46), i.e.,

Lu = ∂2κu

∂τ 2κ
+ (−1)κ+1u, κ = 1, 2, 3, . . . , (57)

where κ ≥ 1 is any a positive integer. When κ = 1, it is exactly the same as
the second-order linear operator (46). When κ = 2, 3, 4, it becomes the fourth,
sixth, eighth-order linear operator, respectively. The linear operator (57) is
(2κ)th-order, whose inverse operator L−1 has the property

L−1[C1 sin(mτ ) + C2 cos(mτ )] = (−1)κ+1[C1 sin(mτ ) + C2 cos(mτ )]

(1 − m2κ )
(58)

and

L−1[C1] = (−1)κ+1C1 (59)

for any constant coefficients C1 and C2.
When κ = 2, the auxiliary linear operator (57) becomes Lu = u(4) − u,

where u(4) denotes the fourth-order differentiation with respect to τ . This
fourth-order linear operator has the property

L
[
C1 cos τ + C2 sin τ + C3eτ + C4e−τ

] = 0 (60)

for any constant coefficients C1, C2, C3, and C4. Using the definition of
Lu = u(4) − u, the general solution of Equation (38) reads

un(τ ) = χnun−1(τ ) + u∗
n(τ ) + C1 cos τ + C2 sin τ + C3eτ + C4e−τ , (61)

where u∗
n(τ ) is a special solution of (38), and C1, C2, C3, C4, are integral

coefficients. Note that there are four integral coefficients C1, C2, C3, and
C4, but we have only two initial conditions (39). However, the terms eτ

and e−τ are not periodic functions, and thus disobey the solution expression
(21). Therefore, they can not appear in the expression of un(τ ), according
to the so-called rule of solution expression: all solutions of the high-order
deformation equations (38) and (39) must be expressed in the form (21). So,
to obey the solution expression (21), we must enforce C3 = C4 = 0. In other
words, the solution expression (21) implies one additional period condition

un(τ ) = un(τ + 2π ),

which enforces C3 = C4 = 0. This condition comes from the periodic property
of u(τ ), i.e.,

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条



Series Solutions of Nonlinear Differential Equations 319

u(τ ) = u(τ + 2π ).

Thereafter, C1 and C2 are uniquely determined by the two initial conditions (39).
Similarly, when κ = 3, the auxiliary linear operator (57) becomes Lu =

u(6) + u, and the general solution of Equation (38) reads

un(τ ) = χnun−1(τ ) + u∗
n(τ ) + C1 cos τ + C2 sin τ

+ e
√

3τ/2(C3 cos τ + C4 sin τ ) + e−√
3τ/2(C5 cos τ + C6 sin τ )

]
, (62)

where Ci is a constant coefficient. Similarly, to obey the solution expression
(21), we must enforce

C3 = C4 = C5 = C6 = 0.

Then, C1 and C2 are uniquely determined by the two initial conditions (39).
Similarly, for any positive integers κ ≥ 1, we can always get a periodic

solution un(τ ) of Equations (38) and (39) by means of the (2κ)th-order
auxiliary linear operator L defined by (57). Here, it should be emphasized
that, although eτ , eτ cos τ and eτ sin τ , which tend to infinity as τ → +∞,
are so-called secular terms, the terms e−τ , e−τ cos τ , e−τ sin τ tend to zero as
τ → +∞ and thus do not belong to the traditional definition of secular term.
So, using the traditional ideas of “avoiding the secular terms,” we can not
avoid the appearance of the non-period terms e−τ , e−τ cos τ , e−τ sin τ in un(τ ).
In this meaning, the so-called rule of solution expression in the frame of the
HAM is more general than the traditional idea of “avoiding secular terms.”

For given λ, ε, and κ , we can get convergent solution series of u(τ ) and γ in
the similar way as mentioned in Section 2.1. It should be emphasized that, for
all auxiliary linear operator L defined by (57), we still have great freedom
to choose a proper value of the auxiliary parameter h̄. For example, let us
consider again the cases of ε = 1 and λ = −9/4, 0, 9/4, respectively. When
κ = 2, the curves of γ ∼ h̄ for three different cases are as shown in Figures 7
and 8. From the so-called h̄-curves of γ ∼ h̄, it is easy to find out the valid
regions of h̄ for different cases:

0 < h̄ < 0.4, when λ = −9/4, ε = 1, κ = 2,

0 < h̄ < 8, when λ = 0, ε = 1, κ = 2,

0 < h̄ < 20, when λ = 9/4, ε = 1, κ = 2.

Choosing a proper value of h̄ in the above valid region in each case, we obtain
the convergent series solution for both γ and u(t), which agree well with
numerical results, as shown in Figure 9. Note that, the valid regions of h̄ in case
of κ = 2 are quite different from those in case of κ = 1: h̄ is negative in case of
κ = 1, but must be positive in case of κ = 2. This once again indicates that the
auxiliary parameter h̄ provides us with a simple way to ensure the convergence
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Figure 7. The curve γ ∼ ε when λ = −9/4, ε = 1 and κ = 2.

of the solution series. Besides, it verifies that, although choosing good basis
functions is very important, it is however not enough to ensure the convergence
of solution series. Thus, it is absolutely necessary to choose a proper value of
the auxiliary parameter h̄ so as to get accurate results of a nonlinear problem.

To further show the importance of the auxiliary parameter h̄, let us consider
Equation (19) in case of κ = 2, λ = 0 for all possible values of ε, i.e., 0 < ε <

+∞. In this case, the convergence region of the series of γ increases as h̄ (h̄ >

0) decreases, as shown in Figure 10. Especially, when h̄ = 1/(1 + ε/15), even
the second-order approximation of γ , i.e.,

γ = 3ε(1497600 + 190320ε + 6401ε2)

26624(15 + ε)2
, (63)

agrees well with the numerical results for all possible physical parameter 0 <

ε < +∞, as shown in Figure 10. The above result gives a simple but accurate
expression of the period of oscillation
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Figure 8. The curve γ ∼ ε when κ = 2, ε = 1, λ = 9/4 and λ = 0. Solid line: λ = 9/4;

Dashed line: λ = 0.

T = 64
√

26π (15 + ε)√
3ε(1497600 + 190320ε + 6401ε2)

, (64)

which agrees well with the numerical results for all 0 < ε < +∞, as shown in
Figure 6. Similarly, when κ = 3 and ε = 1, by means of plotting the γ ∼ h̄
curves as shown in Figures 11 and 12, it is easy to find the corresponding valid
region of h̄ for different values of λ, i.e.,

−0.4 < h̄ < 0, when λ = −9/4, ε = 1, κ = 3,

−60 < h̄ < 0, when λ = 0, ε = 1, κ = 3,

−200 < h̄ < 0, when λ = 9/4, ε = 1, κ = 3.

For given λ, by means of choosing a proper value of h̄ in the corresponding
valid region of h̄, we get convergent solution series for both γ and u(t), which
agree well with numerical results, as shown in Figure 13. Note that, different
from the case of κ = 2, all valid values of h̄ for κ = 3 are negative. Besides, in
case of κ = 3, λ = 0 and 0 < ε < +∞, the convergence region of the series of
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Figure 9. Comparison of the numerical solutions with the HAM approximations of u(t) when

κ = 2, ε = 1. Dash–dotted line: 20th-order HAM solution when λ = −9/4 by means of h̄ =
1/4; Dashed line: 10th-order HAM solution when λ = 0 by means of h̄ = 10; Solid line:

10th-order HAM solution when λ = 9/4 by means of h̄ = 5.

γ increases as h̄ (h̄ < 0) increases and tends to zero, as shown in Figure 14.
Similarly, when κ = 3, λ = 0 and 0 ≤ ε < +∞, even the second-order
approximation of γ by means of h̄ = −1/(1 + ε/100), i.e.,

γ = ε(4739280000 + 91530600ε + 455753ε2)

631904(100 + ε)2
, (65)

agrees well with the numerical results for all possible physical parameter 0 <

ε < +∞, as shown in Figure 14. The above result gives a simple but accurate
expression of the period of oscillation

T = 56
√

806π (100 + ε)√
ε(4739280000 + 91530600ε + 455753ε2)

, (66)

which agrees well with the numerical results for all possible values 0 < ε <

+∞. All of these once again indicate that the auxiliary parameter h̄ indeed
provides us with a simple way to ensure the convergence of solution series.
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Figure 10. The curve γ ∼ ε at the 10th-order approximation when κ = 2, λ = 0. Dashed

line: h̄ = 10; Dash–dotted line: h̄ = 3; Dash–dot–dotted line: h̄ = 1; Solid line: formula (63);

Filled circles: numerical results.

We investigate other cases of κ ≥ 3 for given λ and 0 < ε < +∞ in
a similar way, and find out that we can always find the valid region of h̄
by plotting the so-called γ ∼ h̄ curves, and then get convergent solutions
series for both γ and u(t) by choosing a proper value of h̄. Our investigation
indicate that the valid regions of h̄ strongly depend upon the auxiliary linear
operator L : h̄ must be negative for all odd integer κ but positive for all even
integer κ . Thus, the auxiliary parameter h̄ is absolutely necessary to ensure the
convergence of solution series: without this kind of auxiliary parameter h̄,
the freedom on the choice of the auxiliary linear operator has no meanings
at all, because one can not ensure the convergence of solution series. In
other words, the freedom on the choice of the auxiliary linear operator L
is based on the auxiliary parameter h̄. As mentioned before, some methods
such as Adomian’s decomposition method [4–9], the δ-expansion method [10,
11], Lyapunov’s artificial small parameter method [12] and the “homotopy
perturbation method” [36] are only special cases of the homotopy analysis

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条

sjliao
线条



324 S. Liao and Y. Tan

Figure 11. The curve γ ∼ ε when λ = −9/4, ε = 1 and κ = 3.

method when h̄ = −1. Thus, in essence, all of these methods have no freedom
to choose better auxiliary linear operators to approximate nonlinear problems
more efficiently, because they can not ensure the convergence of solution
series.

Besides, one can use the so-called homotopy-Pàde technique [13] to accelerate
the convergence of solution series. For details about the homotopy-Pàde
technique, please refer to Liao ([13], Section 2.3.7). For example, when λ = 0
and ε = 1, all of our homotopy-Pàde approximations of γ in case of κ = 1,
2, 3, 4, 5 converge to the same result γ = 0.71777, as shown in Table 2.
Furthermore, it is found that, when λ = 0 and 0 < ε < +∞, all of our
homotopy-Pàde approximations of γ given by the auxiliary linear operators
with different orders 2κ converge to the same result

γ = 0.71777ε,

which agrees well with numerical ones. It is found that, for all possible values
of 0 < ε < +∞, the maximum errors of the second-order approximations
(55), (63), and (65) of γ are only less than 0.5%.
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Figure 12. The curve γ ∼ ε when κ = 3, ε = 1, λ = 9/4 and λ = 0. Solid line: λ = 9/4;

Dashed line: λ = 0.

Note that the order of the auxiliary linear operator L defined by (57) is
2κ , where κ ≥ 1 is any a positive integer. However, the original governing
equation (19) is only second-order. So, we illustrate here that, in the frame
of the homotopy analysis method, the second-order nonlinear differential
equation (19) can be replaced by an infinite number of fourth-order (when κ =
2), or sixth-order (when κ = 3), or eighth-order (when κ = 4) linear differential
equations! In fact, the second-order nonlinear differential equation (19) can be
replaced by an infinite number of the (2κ)th-order linear differential equations
for any a positive integer κ ≥ 1. All of these auxiliary linear operators with
different orders give the same results that agree well with numerical ones.
Therefore, the order of the auxiliary linear operator L in the linear subproblems
(6) is unnecessary to be equal to that of the original nonlinear equation. This
means that we have much greater freedom to solve nonlinear problems than
we thought traditionally! Sometimes, this kind of freedom can greatly simplify
solving nonlinear problems, as illustrated in Section 3.

It should be emphasized once again that the auxiliary parameter h̄ is
absolutely necessary to ensure the convergence of the solution series. For any
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Figure 13. Comparison of the numerical solutions with the HAM approximations of u(t)
when κ = 3, ε = 1. Dash–dotted line: 40th-order HAM solution when λ = −9/4 by means of

h̄ = −1/4; Dashed line: fifth-order HAM solution when λ = 0 by means of h̄ = −100; Solid

line: fifth-order HAM solution when λ = 9/4 by means of h̄ = −40.

a chosen linear operator (57) corresponding to any a positive integer of κ ≥
1, we can always find a valid region of h̄ to ensure the convergence of the
solutions series of γ and u(t). Note that, for given λ and ε, the valid region of h̄
depends strongly upon the auxiliary linear operator (57). For the considered
nonlinear oscillation problem, the valid value of h̄ is negative when κ is odd
but positive when κ is even. Note that, when λ = 0 and λ = 9/4, the length
of the valid region of h̄ increases as the value of κ increases, as shown in
Figures 4, 8, and 12. However, when λ = −9/4, it nearly keeps the same,
as shown in Figures 4, 7, and 11. Therefore, the freedom on the choice of
the auxiliary linear operator L and basis functions is based on such a kind
of guarantee that the auxiliary parameter h̄ can ensure the convergence of
solution series. So, it is the auxiliary parameter h̄ that provides us a solid base
for the freedom on the choice of the auxiliary linear operator L and basis
functions. Thus, the auxiliary parameter h̄ is very important and absolutely
necessary: without h̄, such a kind of freedom has no meanings at all.
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Figure 14. The curve γ ∼ ε at the 10th-order approximation when κ = 3, λ = 0. Dashed

line: h̄ = −50; Dash–dotted line: h̄ = −10; Dash–dot–dotted line: h̄ = −3; Solid line: formula

(65); Filled circles: numerical results.

Table 2
[m, m] Homotopy-Pàde Approximation of γ When λ = 0, ε = 1 for Different κ

m κ = 1 κ = 2 κ = 3 κ = 4 κ = 5

2 0.71780 0.71851 0.71966 0.72025 0.72047
4 0.71777 0.71779 0.71780 0.71731 0.72455
6 0.71777 0.71776 0.71784 0.71788 0.71790
8 0.71777 0.71777 0.71779 0.71785 0.71789
10 0.71777 0.71777 0.71777 0.71782 0.71786
12 0.71777 0.71777 0.71777 0.71776 0.71786
14 0.71777 0.71777 0.71777 0.71777 0.71780
16 0.71777 0.71777 0.71777 0.71777 0.71778
18 0.71777 0.71777 0.71777 0.71777 0.71777
20 0.71777 0.71777 0.71777 0.71777 0.71777



328 S. Liao and Y. Tan

In summary, the auxiliary parameter h̄ provides a simple way to ensure the
convergence of solution series, and a solid base for the freedom of the choice of
the auxiliary linear operators and basis functions. Here, we illustrate that, by
means of the rule of solution expression, and using the freedom of the choice
of the auxiliary linear operator and the auxiliary parameter h̄, we can replace a
nonlinear differential equation of order n into an infinite number of linear
differential equations of order k, where k is unnecessary to be equal to n.

3. Application to Gelfand equation

In Section 2, we describe the basic ideas of the homotopy analysis method,
and illustrate that we have great freedom to choose the auxiliary linear
operator. Using this kind of freedom, we can replace the second-order nonlinear
differential equation (19) by an infinite number of linear 2κ-order linear
differential equations, where κ ≥ 1 is any a positive integer. In this section, we
further illustrate that, sometimes, such kind of freedom makes it much easier
to solve nonlinear problems.

For example, let us consider the so-called Gelfand equation [46, 47]{
�u + λeu = 0, x ∈ � ⊂ RN ,

u = 0, x ∈ ∂�,
(67)

where λ is an eigenvalue, u is the eigenfunction, the subscript denotes the
differentiation to the spacial variables, N = 1, 2, 3 corresponds to the dimension,
� is the domain, respectively. Mathematically, the difficulty comes from the
exponential term exp(u), corresponding to a strong nonlinearity. Physically,
Gelfand equation arises in several contexts, such as chemical reactor theory,
the steady-state equation for a nonlinear heat conduction problem, questions
on geometry and relativity about the expansion of universe, and so on.

Generally speaking, it is not easy to get eigenvalue and eigenfunction of a
nonlinear differential equation, especially when the nonlinearity is strong and
the dimension is high. The investigation on Gelfand problem [46, 47] has a
long history. Liouville [46] gave a closed-form expression of eigenvalue for
one-dimensional (1D) Gelfand equation. Based on Chebyshev functions, Boyd
[47] provided an analytic approach and a numerical method for two-dimensional
(2D) Gelfand equation. Boyd [47] gave a one-point analytic approximation

λ = 3.2Ae−0.64A, (68)

and a three-point analytic approximation

λ = (2.667A + 4.830B + 0.127C) e−0.381A−0.254B−0.018C , (69)
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where A = u(0, 0) and

B = A(0.829 − 0.566e0.463A − 0.0787e−0.209A)/G,

C = A(−1.934 + 0.514e0.463A + 1.975e−0.209A)/G,

G = 0.2763 + e0.463A + 0.0483e−0.209A.

This problem still attracts the attention of current researchers [48, 49]. In this
section, the homotopy analysis method (HAM) [13] is employed to get series
solution of eigenvalue and eigenfunction of 2D and 3D Gelfand equation.

3.1. The HAM approach for 2D Gelfand equation

First, let us consider the 2D case, i.e.,

�u + λeu = 0 (70)

on the square [−1, 1] × [−1, 1], subject to the boundary conditions

u = 0, on four walls. (71)

Write

A = u(0, 0) (72)

and

u(x, y) = A + w(x, y), (73)

where A is a given value. The original Gelfand equation becomes

�w + λeAew = 0, (74)

subject to the boundary conditions on four walls:

w(x, ±1) = −A, w(±1, y) = −A, (75)

and the restriction condition:

w(0, 0) = 0. (76)

From Equation (74), it is obvious that w(x , y) is symmetric about x and y
axis, i.e., w(−x , y) = w(x , y) = w(x , −y). Thus, considering the above
restriction condition, w(x , y) can be expressed by the basis functions{

x2m y2n | m = 1, 2, 3, . . . , n = 1, 2, 3, . . .
}

(77)

in the form

w(x, y) =
+∞∑
m=1

+∞∑
n=1

bm,nx2m y2n, (78)
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where bm,n is a constant coefficient. This provides us the so-called solution
expression of w(x , y). Our aim is to find a series solution of w(x , y) expressed
by (78) for given A.

According to the restriction condition (76) and the solution expression (78),
it is natural for us to choose such an initial guess

w0(x, y) = 0. (79)

According to Equation (74), we define such a nonlinear operator

N [�(x, y; q), �(q)] = ∂2�(x, y; q)

∂x2
+ ∂2�(x, y; q)

∂y2

+ eA�(q) exp[�(x, y; q)], (80)

where q ∈ [0, 1] is an embedding parameter, �(x, y; q) and �(q) relate to w(x ,
y) and λ, respectively. Let L denote an auxiliary linear operator, which we
will choose later, and h̄ be a nonzero auxiliary parameter, respectively. We
construct the zeroth-order deformation equation

(1 − q)L [�(x, y; q) − w0(x, y)] = h̄qN [�(x, y; q), �(q)] (81)

on the square [−1, 1] × [−1, 1], subject to the boundary condition on four walls:

(1 − q)[�(±1, y; q) − w0(±1, y)] = h̄q[�(±1, y; q) + A], (82)

(1 − q)[�(x, ±1; q) − w0(x, ±1)] = h̄q[�(x, ±1; q) + A], (83)

and the restriction condition at the origin:

(1 − q) [�(0, 0; q) − w0(0, 0)] = h̄q�(0, 0; q), (84)

where q ∈ [0, 1] is an embedding parameter.
Obviously, when q = 0, the above equations have the solution

�(x, y; 0) = w0(x, y). (85)

When q = 1, because h̄ �= 0, Equations (81)–(84) are equivalent to the original
Equations (74)–(76), provided

�(x, y; 1) = w(x, y), �(1) = λ. (86)

Thus, as q increases from 0 to 1, �(x, y; q) varies from the initial guess w0(x ,
y) to the eigenfunction w(x , y), so does �(q) from the initial guess λ0 = �(0)
to the eigenvalue λ. By Taylor series and using (85), we have the Taylor series
in the embedding parameter q as follows:

�(x, y; q) = w0(x, y) +
+∞∑
n=1

wn(x, y) qn, (87)
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�(q) = λ0 +
+∞∑
n=1

λn qn, (88)

where

wn(x, y) = 1

n!

∂n�(x, y; q)

∂qn

∣∣∣∣
q=0

, λn = 1

n!

dn�(q)

dqn

∣∣∣∣
q=0

. (89)

Note that the series (87) and (88) contain the auxiliary parameter h̄, which
influences the convergence of (87) and (88). Assume that h̄ is chosen properly
so that the series (87) and (88) are convergent at q = 1. Then, using (86), we
have

w(x, y) = w0(x, y) +
+∞∑
n=1

wn(x, y), (90)

λ = λ0 +
+∞∑
n=1

λn. (91)

The unknown wn(x , y) and λn−1, where n = 1, 2, 3, . . . , are obtained in the
following way. For simplicity, define the vectors


wk = {w0(x, y), w1(x, y), w2(x, y), . . . , wk(x, y)},

λk = {λ0, λ1, λ2, . . . , λk}.

Differentiating the zeroth-order deformation equations (81)–(84) n times with
respect to q, then dividing by n!, and finally setting q = 0, we have the
nth-order deformation equation3

L [wn(x, y) − χn wn−1(x, y)] = h̄ Rn( 
wn−1, 
λn−1), (92)

subject to the boundary conditions on four walls:

wn(x, ±1) = δn(x, ±1), (93)

wn(±1, y) = δn(±1, y), (94)

and the restriction condition at the origin:

wn(0, 0) = (χn + h̄)wn−1(0, 0), (95)

where

δn(x, y) = (χn + h̄)wn−1(x, y) + h̄(1 − χn)A

3As mentioned in Section 2.1, there are two different ways to get the high-order deformation equations.
Both of them give the same results. For details, please read Appendix A and B, or refer to Hayat et al. [31].
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and

Rn( 
wn−1, 
λn−1) = �wn−1(x, y) + eA
n−1∑
k=0

λn−1−k Sk(x, y), (96)

with the definitions

Sk(x, y) = 1

k!

∂ke�(x,y;q)

∂qk

∣∣∣∣
q=0

. (97)

According to (79) and (97), it holds,

S0(x, y) = ew0(x,y) = 1.

Besides, we have

∂e�(x,y;q)

∂q
= e�(x,y;q) ∂�(x, y; q)

∂q
.

So, for n ≥ 1, it holds

1

n!

∂ne�(x,y;q)

∂qn
= 1

n!

∂n−1

∂qn−1

[
e�(x,y;q) ∂�(x, y; q)

∂q

]

= 1

n!

n−1∑
j=0

(n − 1)!

j!(n − 1 − j)!

∂ j e�(x,y;q)

∂q j

∂n− j�(x, y; q)

∂qk− j

=
n−1∑
j=0

(
1 − j

n

) [
1

j!

∂ j e�(x,y;q)

∂q j

] [
1

(n − j)!

∂n− j�(x, y; q)

∂qn− j

]
.

(98)

Thus, using the definitions (89) and (97), we have the recurrence formula

S0 = 1, Sn =
n−1∑
j=0

(
1 − j

n

)
Sjwn− j . (99)

In this way, it is easy to calculate the term Rn( 
wn−1, 
λn−1) of the high-order
deformation equation (92).

The corresponding auxiliary linear operator L should be chosen properly.
First, to obey the solution expression (78) of w(x , y), it should hold

L[C1] = 0 (100)

for any a nonzero constant coefficient C1. Second, because w0(x , y) = 0, it
holds R1 = λ0eA, thus, Rm( 
wm−1, 
λm−1) may contain a nonzero constant. So,
to obey the solution expression (78), the inverse operator L−1 of the auxiliary
linear operator L should have the property:

L−1[1] = Cx2 y2, (101)
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where C is a nonzero constant. More importantly, the linear auxiliary operator
should be chosen so properly that it is convenient to satisfy the boundary
conditions (93) and (94) at four walls. Let w∗

m(x , y) denote a special solution
of Equation (92). Obviously,

w∗
n(x, y) − w∗

n(x ; ±1) − w∗
n(±1, y) + w∗

n(±1, ±1)

vanishes on the four walls, and besides

δn(x, ±1) + δn(±1, y) − δn(±1, ±1)

satisfies the boundary conditions (93) and (94) on the four walls. Therefore,

wn(x, y) = w∗
n(x, y) − w∗

n(x, ±1) − w∗
n(±1, y) + w∗

n(±1, ±1)

+ δn(x, ±1) + δn(±1, y) − δn(±1, ±1) (102)

is the solution of Equations (92)–(94), if the auxiliary operator L has the
property

L [ f (x)] = L[g(y)] = 0, (103)

where f (x) and g(y) are any functions of x and y, respectively. There are an
infinite number of linear operators L satisfying the properties (100), (101),
and (103). For example,

Lu = α2

(
1

xy

)
∂2u

∂x∂y
, (104)

and

Lu = α4

∂4u

∂x2∂y2
, (105)

where α2 and α4 are constant coefficients. They are special cases of the operator:

Lu =
(

α2

xy

)
∂2u

∂x∂y
+ α4

∂4u

∂x2∂y2
, (106)

whose inverse operator is

L−1[xk yn] = xk+2 yn+2

(k + 2)(n + 2)[α2 + α4(k + 1)(n + 1)]
. (107)

Using the above inverse operator L−1, it is easy to get a special solution of
Equation (92), i.e.,

w∗
n(x, y) = h̄L−1[Rn( 
wn−1, 
λn−1)] + χnwn−1(x, y). (108)

Thereafter, the solution wn(x , y) of the high-order deformation equations (92)–
(94) is given by (102). Then, λn−1 is determined by the linear algebraic
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equation (95). The above approach needs only algebraic calculations. Thus, it is
easy for us to obtain results at rather high order of approximations, especially
by means of symbolic computation software such as Mathematica, Maple,
MathLab and so on. For example, the corresponding Mathematica code for 2D
Gelfand equation is given in Appendix C.4

As shown in Section 2, the convergence of the series (90) and (91) are
determined by the auxiliary parameter h̄. It is found that the nth-order
approximation of u(x, y) on the four walls is

A(1 +h̄)n,

which vanishes as n → +∞, only if

|1 +h̄| < 1. (109)

This restricts the choice of the value of h̄. Especially, when h̄ = −1, the
boundary conditions on the four walls are exactly satisfied at every order of
approximation. However, when |1 + h̄| < 1, the series of eigenvalue λ and
eigenfunction u(x, y) are divergent by means of the auxiliary linear operator
(104) for any values of α2 �= 0. It is interesting that, when |1 + h̄| < 1, the
series of eigenvalue and eigenfunction are convergent for any values of A by
means of the auxiliary operator (105) if α4 < −1/2. For example, when A = 3
and h̄ = −1, the series of eigenvalue is convergent for any values of α4 <

−1/2, as shown in Figure 15. When h̄ = −1 and α4 = −1, the 25th-order
HAM approximation of the eigenvalue

λ ≈ e−A(3.39463856A + 0.852428251A2 + 0.14535358A3

+ 1.83839458 × 10−2 A4 + 1.59846843 × 10−3 A5

+ 8.92565457 × 10−5 A6 + 2.83370030 × 10−6 A7

− 8.12484778 × 10−7 A8 − 1.86368503 × 10−7 A9

− 9.57976887 × 10−9 A10 + 1.65428886 × 10−9 A11 + · · ·), (110)

agrees well with Boyd’s numerical results [47], as shown in Figure 16. Note
that even the 10th-order HAM approximation of eigenvalue is accurate enough.
As shown in Table 3, the eigenvalue of the 2D Gelfand equation has the
maximum value 1.70205 at A = 1.391, which agrees with Boyd’s numerical
result λmax = 1.702 at A = 1.39.

Note that, we use here the auxiliary linear operator

Lu = − ∂4u

∂x2∂y2
.

4To get free electronic version of this code, please send email to the corresponding author.
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Figure 15. The fifth-order HAM approximation of the eigenvalue of 2D Gelfand equation

when A = 3 and h̄ = −1 by means of (105).

There exist an infinite number of functions, such as

sin x, cos y, x cos y, y cos x, xg(y), y f (x)

and so on, satisfying

L[sin x] = L[cos y] = L[x cos y] = L[y sin x] = L[x f (y)] = L[yg(x)] = 0,

where f (x), g(y) are any real functions. However, all of them are not allowed to
appear in the solution of Equation (92), because they disobey the solution
expression (78). In other words, if w∗

n(x , y) is a special solution of Equation (92),
then

w∗
n(x, y) + B1 sin x + B2 cos y + B3x cos y + B4 y sin x

+ B5x f (y) + B6 yg(x) + · · ·
also satisfies Equation (92), where Bk is a coefficient. However, to obey the
solution expression (78), we had to enforce
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Figure 16. Eigenvalue of 2D Gelfand equation. Solid line: 25th-order HAM approximation

(110); Open circles: fifth-order HAM approximation; Filled circles: Numerical results given

by Boyd [47]; Dashed line: Boyd’s one-point approximation (68); Dash–dotted line: Boyd’s

three-points approximation (69).

Table 3
Comparison of the Maximum Eigenvalue of 2D Gelfand Equation with Boyd’s

Analytic and Numerical Results [47]

λmax Alimit

5th-order HAM approx. 1.70115 1.383
10th-order HAM approx. 1.70200 1.389
15th-order HAM approx. 1.70205 1.391
20th-order HAM approx. 1.70205 1.391
25th-order HAM approx. 1.70205 1.391

One-point formula (68) 1.84 1.56
Three-point formula (69) 1.735 1.465

Numerical result 1.702 1.39
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B1 = B2 = B3 = B4 = B5 = B6 = · · · = 0.

As pointed out by Liao ([13], chapters 2 and 3) and mentioned in Section 2,
the initial guess and the auxiliary linear operator must be chosen in such a
way that the solutions of the high-order deformation equations exist and do
not disobey the solution expression: this is so important in the frame of the
homotopy analysis method that it is regarded as a rule, namely the rule of
solution expression, as mentioned in Section 2. This illustrates once again that
the so-called rule of solution expression has general meanings, and can greatly
simplify finding solutions of some nonlinear problems.

In this subsection, we illustrate that the second-order 2D Gelfand equation
can be replaced by an infinite number of fourth-order linear differential
equations. More importantly, this approach greatly simplifies finding eigenvalue
and eigenfunction of the original 2D Gelfand equation with strong nonlinearity.

3.2. The HAM approach for 3D Gelfand equation

Let us further consider the 3D Gelfand equation

�u + λeu = 0, (111)

on the cube [−1, 1] × [−1, 1] × [−1, 1], subject to the boundary conditions

u = 0, on the six walls. (112)

Write

A = u(0, 0, 0) (113)

and

u(x, y, z) = A + w(x, y, z). (114)

The original equations become

�w + λeAew = 0, (115)

subject to the boundary conditions on the six walls:

w(±1, y, z) = w(x, ±1, z) = w(x, y, ±1) = −A, (116)

and the restriction condition:

w(0, 0, 0) = 0. (117)

In a similar way as mentioned in Section 3.1, we have the solution series

w(x, y, z) = w0(x, y, z) +
+∞∑
n=1

wn(x, y, z), (118)
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λ = λ0 +
+∞∑
n=1

λn. (119)

Similarly, w0(x , y, z) = 0, and wn(x , y, z) is given by

wn(x, y, z) = w∗
n(x, y, z) − w∗

n(±1, y, z) − w∗
n(x, ±1, z) − w∗

n(x, y, ±1)

+ w∗
n(x, ±1, ±1) + w∗

n(±1, y, ±1) + w∗
n(±1, ±1, z)

− w∗
n(±1, ±1, ±1)

+ δn(±1, y, z) + δn(x, ±1, z) + δn(x, y, ±1)

− δn(x, ±1, ±1) − δn(±1, y, ±1) − δn(±1, ±1, z)

+ δn(±1, ±1, ±1), (120)

where

w∗
n(x, y, z) = h̄L−1[Rn( 
wn−1, 
λn−1)] + χnwn−1(x, y, z), (121)

δn(x, y, z) = (χn +h̄)wn−1(x, y, z) +h̄ (1 − χn)A, (122)

with the definition

Rn( 
wn−1, 
λn−1) = �wn−1(x, y, z) + eA
n−1∑
k=0

λn−1−k Sk(x, y, z), (123)

in which Sk(x , y, z) is given by the recurrence formula (99). Similarly, λn−1 is
determined by the linear algebraic equation:

wn(0, 0, 0) = (χn +h̄)wn−1(0, 0, 0). (124)

In this way, using

w0(x, y, z) = 0, S0(x, y, z) = 1,

it is easy for us to get wn(x , y, z) and λn−1 one by one in the order n = 1, 2, 3, . . . .
Similarly, we choose the auxiliary linear operator L in (121) as follows:

Lw =
(

α3

xyz

)
∂3w

∂x∂y∂z
+ α6

∂6w

∂x2∂y2∂z2
, (125)

where α3 and α6 are constants. Its inverse operator is

L−1[xl ynzk] = xl+2 yn+2 zk+2

(l + 2)(n + 2)(k + 2)[α3 + α6(l + 1)(n + 1)(k + 1)]
. (126)

It is found that the nth-order approximation of u(x, y, z) on the six walls is

A(1 +h̄)n,
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which vanishes as n → +∞ when |1 + h̄| < 1, i.e., −2 < h̄ < 0. Similarly, it
is found that convergent series of eigenvalue and eigenfunction can not be
obtained when α3 �= 0 and −2 < h̄ < 0. However, the series of eigenvalue
and eigenfunction are convergent when −2 < h̄ < 0, α3 = 0 and α6 > 1/2.
For example, when h̄ = −1, α3 = 0 and α6 = 1, we have the 16th-order
approximation of the eigenvalue:

λ = e−A(4.4938711591A + 1.2945236107A2

+ 3.2051405745 × 10−1 A3 + 5.4513875743 × 10−2 A4

+ 7.4728993234 × 10−3 A5 + 7.3205808924 × 10−4 A6

+ 4.4124633612 × 10−5 A7 − 7.8131103398 × 10−7 A8

− 5.2875679521 × 10−7 A9 − 5.1192218589 × 10−8 A10

+ 3.1141409410 × 10−10 A11 + 5.6668899319 × 10−10 A12

+ 4.0913909123 × 10−11 A13 − 2.9126197658 × 10−12 A14

− 4.5871791205 × 10−13 A15 + 1.8121316154 × 10−14 A16

+ 8.538605916 × 10−16 A17). (127)

It has the maximum value 1.60 at A = 2.476, as shown in Table 4. The curve
of the eigenvalue of the 3D Gelfand equation is as shown in Figure 17.

Here, we illustrate that the second-order three-dimensional Gelfand equation
can be replaced by an infinite number of the sixth-order linear differential
equations. Note that our approach needs only algebraic calculations so that
we can get results at rather high order of approximations. It shows that,
sometimes, the freedom on the choice of the auxiliary linear operator might
greatly simplify finding solutions of some nonlinear problems.

Table 4
The Maximum Eigenvalue of 3D Gelfand Equation

λmax Alimit

Second-order HAM approx. 1.75 2.716
Fourth-order HAM approx. 1.60 2.477
Sixth-order HAM approx. 1.60 2.475
Eighth-order HAM approx. 1.60 2.476
10th-order HAM approx. 1.60 2.476
12th-order HAM approx. 1.60 2.476
14th-order HAM approx. 1.60 2.476
16th-order HAM approx. 1.60 2.476
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Figure 17. Eigenvalue of 3D Gelfand equation. Solid line: 16th-order HAM approximation

(127); Open circles: 14th-order HAM approximation.

Finally, we point out that, it is much more complicated if one uses Lu = �u
as the auxiliary linear operator. For 2D problem, the general solution of �u =
0 is

u(x, y) = (
C1e−μ1x + C2eμ1x

)
(C3 sin μ1 y + C4 cos μ1 y)

+ (
C5e−μ2 y + C6eμ2 y

)
(C7 sin μ2x + C8 cos μ2x),

where Ck , μ1, μ2 are constant coefficients, and it is rather difficult to satisfy the
boundary conditions at the four walls. In case of three dimension, the problem
becomes even more complicated. Therefore, the linear operator Lu = �u,
which appears as the linear term in Gelfand equation �u + λ eu = 0, is
not a good choice for us. Fortunately, we have great freedom to choose the
auxiliary linear operator L. And by means of this kind of freedom, it becomes
much easier to solve the eigenvalue and eigenfunction of the high-dimensional
Gelfand equation �u + λeu = 0.
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4. Discussion and conclusion

In this paper, the basic ideas of a general analytic method for nonlinear
problems, namely the homotopy analysis method (HAM), are described first
by means of a nonlinear oscillation problem as an example. As pointed
out in Section 2.1, the homotopy analysis method has many advantages.
Different from perturbation techniques [1–3], the homotopy analysis method is
independent of any small physical parameters at all. Besides, it provides us
with a simple way to ensure the convergence of the solution series, so that
we can always get accurate enough approximations. Furthermore, as proved
by Liao [13, 27], Hayat et al. [31] and Sajid et al. [32], and pointed out
by Abbasbandy [33–35], the homotopy analysis method logically contains
the so-called non-perturbation methods such as Adomian’s decomposition
method [4–9], the δ-expansion method [10, 11], Lyapunov’s artificial small
parameter method [12], and “homotopy perturbation method” [36], and thus
is more general. In Section 2.2, we further illustrate that the second-order
nonlinear differential equation (19) can be replaced by an infinite number of the
(2κ)th-order linear differential equations, where κ = 1, 2, 3, . . . . In Section 3,
we verify that the second-order two- or three-dimensional nonlinear Gelfand
equation can be replaced by an infinite number of the fourth or sixth-order
linear differential equations, respectively. All of these illustrate that a nth-order
nonlinear differential equation can be replaced by an infinite number of the
kth-order linear differential equations, where the order k is unnecessary to be
equal to the order n. Thus, we have much larger freedom to solve nonlinear
problems than we traditionally thought. It is very interesting that, by means of
this kind of freedom, it might become much easier to find solutions of some
nonlinear problems, as illustrated in Section 3.

All of these base on the flexibility and the advantages of the homotopy
analysis method: different from all other approximation techniques, the
homotopy analysis method provides us great freedom to choose the basis
functions of solutions and the corresponding auxiliary linear operator. More
importantly, different from all other approximation techniques, the homotopy
analysis method provides us with a simple way to ensure the convergence of
solution series by means of introducing the nonzero auxiliary parameter h̄. As
shown in Sections 2 and 3, although choosing a set of good basis functions is
very important, it is unfortunately not enough to ensure the convergence of
solution series, and thus the auxiliary parameter h̄ is absolutely necessary.

The freedom of the homotopy analysis method on the choice of basis functions
and the corresponding auxiliary linear operators might greatly simplify finding
solutions of some nonlinear problems, as illustrated in Section 3. This kind of
freedom has general meanings and thus is very useful. For example, Liao,
Su, and Chwang [44] successfully solved a unsteady nonlinear heat transfer
problem with combined initial/boundary conditions by transferring it into an
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infinite number of steady-state linear boundary-value problems. Currently, Liao
[28] replaced a unsteady boundary-layer flow problem by means of an infinite
number of steady-state linear boundary-value problems. Besides, this kind of
freedom can be used to develop some new numerical techniques for nonlinear
problems, such as the so-called “generalized boundary element method”
[50–54]. All of these indicate that we indeed have much larger freedom and
flexibility to solve nonlinear problems than we thought traditionally. And by
means of this kind of freedom, it might become much easier to find solutions
of some nonlinear problems, as illustrated in this paper and mentioned above.

The examples given in this paper might be helpful to keep us an open mind
for nonlinear problems: it is our traditional thoughts that might be the largest
restriction to our mind. It is a pity that a lot of things are still unclear now. For
example, how can we find the best auxiliary linear operator among an infinite
number of possible ones? Can we give some rigorous mathematical proofs in
general? So, there are many interesting works to do in future. The freedom
on the choice of the auxiliary linear operator might bring forward some
new and interesting problems in applied and pure mathematics, and might, I
wish, finally give us the “whole” freedom of finding solutions of nonlinear
differential equations, if such kind of freedom really exists.
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Appendix A: Detailed deduction of Equations (38)
and (39) by the first approach

Differentiating Equation (27) n times with respect to q, then dividing by n!, we
have for n ≥ 1 that

1

n!

dn{(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

= 1

n!

dn{h̄qN [φ(τ ; q), �(q)]}
dqn

. (A.1)

Using the formula

( f g)(n) =
n∑

k=0

n!

k!(n − k)!
f (k)g(n−k),
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where f , g are any real functions of q and f (k) denotes the kth-order
differentiation with respect to q, we have

1

n!

dn{(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

= (1 − q)

n!

dn

dqn
L[φ(τ ; q) − u0(τ )] − 1

(n − 1)!

dn−1

dqn−1
L[φ(τ ; q) − u0(τ )]

= (1 − q)L
[

1

n!

dnφ(τ ; q)

dqn

]
− L

[
1

(n − 1)!

dn−1φ(τ ; q)

dqn−1

]

+ 1

(n − 1)!

dn−1L[u0(τ )]

dqn−1
.

Setting q = 0 in above expression and using the definition (35) of un(τ ), we have

1

n!

dn {(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

∣∣∣∣
q=0

= L[un(τ )] − L[un−1(τ )] + 1

(n − 1)!

dn−1L[u0(τ )]

dqn−1
,

which gives

1

n!

dn {(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

∣∣∣∣
q=0

= L[u1(τ )], when n = 1,

and

1

n!

dn{(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

∣∣∣∣
q=0

= L[un(τ ) − un−1(τ )], when n ≥ 2,

respectively. Thus, using the definition (41), we have

1

n!

dn {(1 − q)L[φ(τ ; q) − u0(τ )]}
dqn

∣∣∣∣
q=0

= L[un(τ ) − χnun−1(τ )]. (A.2)

Similarly, it holds

1

n!

dn{h̄qN [φ(τ ; q), �(q)]}
dqn

∣∣∣∣
q=0

= h̄

{
q

n!

dnN [φ(τ ; q), �(q)]

dqn
+ 1

(n − 1)!

dn−1N [φ(τ ; q), �(q)]

dqn−1

}∣∣∣∣
q=0

= h̄

(n − 1)!

dn−1N [φ(τ ; q), �(q)]

dqn−1

∣∣∣∣
q=0

= h̄ Rn, (A.3)

where Rn is defined by (40). So, from (A.1), (A.2), and (A.3), we have the
nth-order deformation equation
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L[un(τ ) − χnun−1(τ )] = h̄ Rn.

Then, according to the definition (40) of Rn and the definition (23) of N ,
we have

Rn = 1

(n − 1)!

{
∂n−1

∂qn−1
[�(q)φ′′(τ ; q) + λφ(τ ; q) + εφ3(τ ; q)]

}∣∣∣∣
q=0

.

It holds due to the definition (35) that

1

(n − 1)!

{
∂n−1

∂qn−1
[�(q)φ′′(τ ; q)]

}∣∣∣∣
q=0

= 1

(n − 1)!

{
n−1∑
k=0

(n − 1)!

k!(n − 1 − k)!

dk�(q)

dqk

∂n−1−kφ′′(τ ; q)

∂qn−1−k

}∣∣∣∣∣
q=0

=
{

n−1∑
k=0

[
1

k!

dk�(q)

dqk

] [
1

(n − 1 − k)!

∂n−1−kφ′′(τ ; q)

∂qn−1−k

]}∣∣∣∣∣
q=0

=
n−1∑
k=0

[
1

k!

dk�(q)

dqk

]∣∣∣∣∣
q=0

∂2

∂τ 2

{[
1

(n − 1 − k)!

∂n−1−kφ(τ ; q)

∂qn−1−k

]∣∣∣∣
q=0

}

=
n−1∑
k=0

γku′′
n−1−k(τ ).

Similarly, we have

1

(n − 1)!

{
∂n−1

∂qn−1
[λφ(τ ; q)]

}∣∣∣∣
q=0

= λun−1(τ )

and

1

(n − 1)!

{
∂n−1

∂qn−1
[εφ3(τ ; q)]

}∣∣∣∣
q=0

= ε

(n − 1)!

{
n−1∑
k=0

(n − 1)!

k!(n − 1 − k)!

∂n−1−kφ(τ ; q)

∂qn−1−k

∂k[φ2(τ ; q)]

∂qk

}∣∣∣∣∣
q=0

= ε

{
n−1∑
k=0

1

k!(n − 1 − k)!

∂n−1−kφ(τ ; q)

∂qn−1−k

×
k∑

j=0

k!

j!(k − j)!

∂k− jφ(τ ; q)

∂qk− j

∂ jφ(τ ; q)

∂q j

}∣∣∣∣∣
q=0
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= ε

{
n−1∑
k=0

[
1

(n − 1 − k)!

∂n−1−kφ(τ ; q)

∂qn−1−k

]

×
k∑

j=0

[
1

(k − j)!

∂k− jφ(τ ; q)

∂qk− j

] [
1

j!

∂ jφ(τ ; q)

∂q j

]}∣∣∣∣∣
q=0

= ε

n−1∑
k=0

un−1−k(τ )
k∑

j=0

uk− j (τ )u j (τ ).

So, we have

Rn(
un−1, 
γn−1)

=
n−1∑
k=0

γku′′
n−1−k(τ ) + λun−1(τ ) + ε

n−1∑
k=0

un−1−k(τ )
k∑

j=0

uk− j (τ )u j (τ ). (A.4)

Besides, differentiating (28) n times with respect to q, then dividing by n!,
and finally setting q = 0, we have, using the definition (35) of un(τ ), the
corresponding initial conditions

un(0) = 0, u′
n(0) = 0.

Note that, (A.2) and (A.3) are valid for any definitions of a linear operator L
and a nonlinear operator N . So, as long as the zero-order deformation equation
is expressed by (27), the corresponding high-order deformation equations can
be expressed in the same form

L[un − χnun−1] = h̄ Rn,

where only

Rn = 1

(n − 1)!

dn−1N [φ]

dqn−1

∣∣∣∣
q=0

is different for different definitions of nonlinear operator N related to different
problems. For example, the high-order deformation equation (92) of Gelfand
problem is in the same form. In this way, it is easy to give high-order
deformation equations. Therefore, by means of the HAM, it is convenient
to get high-order approximation by means of symbolic software such as
Mathematica, Maple, MathLab and so on.

Appendix B: Detailed deduction of Equations (38)
and (39) by the second approach

As pointed out by Hayat et al. [31] and Sajid et al. [32], directly substituting
(33) and (34) into the zeroth-order deformation equations (27) and (28), and
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equating the coefficients of the like power of q, one can get exactly the same
equations as (38) and (39).

Using the series expression (33), we have

(1 − q)L [φ(τ ; q) − u0(τ )]

= (1 − q)L
[+∞∑

k=0

uk(τ )qk − u0(τ )

]

= (1 − q)L
[+∞∑

k=1

uk(τ )qk

]

=
+∞∑
k=1

L [uk(τ )] qk −
+∞∑
k=1

L [uk(τ )] qk+1

=
+∞∑
k=1

L [uk(τ )] qk −
+∞∑
k=2

L [uk−1(τ )] qk

= L[u1(τ )]q +
+∞∑
k=2

L [uk(τ ) − uk−1(τ )] qk

=
+∞∑
n=1

L [un(τ ) − χnun−1(τ )] qn, (B.1)

where χn is defined by (41).
Substituting the series (33) and (34) into the definition (23), we have

N [φ(τ ; q), �(q)]

=
(+∞∑

i=0

γi q
i

) (+∞∑
j=0

u′′
j (τ )q j

)
+ λ

+∞∑
n=0

un(τ )qn

+ ε

(+∞∑
i=0

ui (τ )qi

) (+∞∑
j=0

u j (τ )q j

) (+∞∑
l=0

ul(τ )ql

)

=
+∞∑
n=0

[
n∑

k=0

γku′′
n−k(τ )

]
qn + λ

+∞∑
n=0

un(τ )qn

+ ε

+∞∑
n=0

[
n∑

k=0

un−k(τ )
k∑

j=0

u j (τ )uk− j (τ )

]
qn

=
+∞∑
n=0

[
n∑

k=0

γku′′
n−k(τ ) + λun(τ ) + ε

n∑
k=0

un−k(τ )
k∑

j=0

u j (τ )uk− j (τ )

]
qn.
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According to (40) or (A.4), the above expression reads

N [φ(τ ; q), �(q)] =
+∞∑
n=0

Rn+1(
un, 
γn)qn. (B.2)

Substituting (B.1) and (B.2) into the zeroth-order deformation equations (27),
one has

+∞∑
n=1

L [un(τ ) − χnun−1(τ )] qn = h̄
+∞∑
n=0

Rn+1(
un, 
γn)qn+1.

Equating the coefficient of like-power of q in above equation, we have

L [un(τ ) − χnun−1(τ )] = h̄ Rn(
un−1, 
γn−1),

which is exactly the same as the high-order deformation equation (38).
Besides, substituting (33) into the initial conditions φ(0; q) = 1 and

φ′(0; q) = 0, equating the coefficient of the like power of q, we have

uk(0) = 0, u′
k(0) = 0, k = 1, 2, 3, . . . ,

which is exactly the same as the initial conditions (39).
In the approach mentioned above, q is unnecessary to be a small parameter

at all, which is assumed in [36]. Therefore, no matter whether one regards
the embedding parameter q as a small parameter or not, one should always
get the same high-order deformation equations from the same zeroth-order
deformation equations, as proved by Hayat et al. [31] and Sajid et al. [32], and
pointed out by Abbasbandy [33–35]. This is mainly because the Taylor series of
a real function is unique, according to the fundamental theorem in calculus [45].

So, according to Appendix A and B, we confirm the conclusion given by
Hayat et al. [31], Sajid et al. [32] and Abbasbandy [33, 34] : the so-called
“homotopy perturbation method” [36] (proposed in 1999) is indeed only a
special case of the homotopy analysis method [13, 25–27] (propounded in
1992) when h̄ = −1, and thus cannot give any new things.

Appendix C: Mathematica code for 2D Gelfand equation5

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

For given A, we find such an eigenvalue λ and an eigenfunction w(x , y) that:

�u + λ exp(u) = 0

5To get free electronic version of this code, please send email to the corresponding author.
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subject to the boundary conditions:

u(±1, y) = u(x, ±1) = 0, u(0, 0) = A

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
�Calculus‘Pade‘;
�Graphics‘Graphics‘;

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define initial guess of w(x,y)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
w[0] = beta;
U[0] = A + w[0];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define the function chi[k]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
chi[k ] := If[k <= 1, 0, 1];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define the the auxiliary linear operator L
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
L[f ] := Module[{ },
Expand[alpha[2] ∗ D[f, { x, 1 }, { y, 1 }]/x/y + alpha[4]∗D[f, {x, 2}, {y, 2}]]
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define the inverse operator of the auxiliary linear operator L
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
Linv[x ∧ m ∗ y ∧ n ] := x ∧ (m+2) ∗ y ∧ (n+2)/(m+2)/(n+2)
/(alpha[2] + alpha[4] ∗ (n+1) ∗ (m+1) );
Linv[x ∧ m ] := x ∧ (m+2) ∗ y ∧ 2/(m+2)/2/(alpha[2] + alpha[4]∗(m+1));
Linv[y ∧ n ] := x ∧ 2 ∗ y ∧ (n+2)/(n+2)/2/(alpha[2] + alpha[4]∗(n+1));
Linv[c ] := c∗x ∧ 2 ∗ y ∧ 2/4/(alpha[2]+alpha[4]) /; FreeQ[c,x] && FreeQ[c,y];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The linear property of the inverse operator of L
Linv[f+g] = Linv[f]+Linv[g];
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
Linv[p Plus] := Map[Linv, p];
Linv[c ∗ f ] := c ∗ Linv[f] /; FreeQ[c, x] && FreeQ[c, y];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define GetR[k]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
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GetR[k ] := Module[{ temp, n },
temp[1] = D[w[k - 1], { x, 2 }] + D[w[k - 1], { y, 2 }];
temp[2] = Sum[delta[n] ∗ GAMMA[k - 1 - n], { n, 0, k - 1 }];
R[k] = Expand[temp[1] + temp[2]];
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define GetRHS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
GetRHS[k ] := Module[{ },
GetR[k];
RHS[k] = Expand[hbar ∗ R[k]];
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define GetGAMMA[n]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
GetGAMMA[n ] := Module[{ },
If [n == 0, GAMMA[0] = Exp[beta]];
If [n > 0, GAMMA[n] = Sum[(1-j/n)∗GAMMA[j]∗w[n-j],{j,0,n-1}]//Expand];
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define Getdelta: this module gets delta[k-1]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
Getdelta[k ] := Module[{ eq, temp },
eq = w[k] - (hbar + chi[k] ) ∗ w[k - 1] /. {x -> 0,y->0};
temp = Solve[eq == 0, delta[k - 1]];
delta[k - 1] = temp[[1, 1, 2]]//Expand;
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define GetwSpecial
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
GetwSpecial[k ] := Module[{ temp },
temp[0] = Expand[RHS[k]];
temp[1] = Linv[temp[0]];
temp[2] = temp[1] + chi[k] ∗ w[k - 1]//Simplify;
wSpecial = temp[2]//Expand;
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define Getw
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
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Getw[k ] := Module[{ temp, alpha },
alpha = (hbar + chi[k] ) ∗ w[k - 1] + hbar ∗ (1 - chi[k] ) ∗ A;
temp[1] = wSpecial /. y -> 1;
temp[2] = wSpecial /. x -> 1;
temp[3] = wSpecial /. {x -> 1, y -> 1};
temp[4] = alpha /. x -> 1;
temp[5] = alpha /. y -> 1;
temp[6] = alpha /. {x -> 1, y -> 1};
temp[7] = wSpecial - temp[1]-temp[2]+temp[3]+temp[4]+temp[5]-temp[6];
w[k] = Simplify[temp[7]]//Expand;
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

This module gives the [m,n] homotopy-Pàde approximation of a series
For details, please refer to Section 2.3.7 of Liao’s book: Beyond Perturbation,
CRC Press.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
hp[F , m , n ] := Block[{i, k, dF, temp, q },
dF[0] = F[0];
For[k = 1, k <= m + n, k = k + 1, dF[k] = Expand[F[k] - F[k - 1]]];
temp = dF[0] + Sum[dF[i] ∗ q ∧ i, {i, 1, m+n }];
Pade[temp, {q, 0, m, n }] /. q -> 1
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Boyd’s one-point analytic approximation
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
Boyd1[A ] := 3.2 ∗ A ∗ Exp[-0.64 ∗ A];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Boyd’s three-point analytic approximation
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
Boyd3[A ] := Module[{ temp, B, C, G },
G = 0.2763 + Exp[0.463 ∗ A] + 0.0483 ∗ Exp[-0.209 ∗ A];
B = A ∗ (0.829 - 0.566 ∗ Exp[0.463 ∗ A] - 0.0787 ∗ Exp[-0.209 ∗ A])/G;
C = A ∗ (-1.934 + 0.514 ∗ Exp[0.463 ∗ A] + 1.9750 ∗ Exp[-0.209 ∗ A])/G;
temp[1] = 2.667 ∗ A + 4.830 ∗ B + 0.127 ∗ C;
temp[2] = 0.381 ∗ A + 0.254 ∗ B + 0.018 ∗ C;
temp[1] ∗ Exp[-temp[2]]
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Main Code
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
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ham[m0 , m1 ] := Module[{ temp, k, j },
For[k = Max[1, m0], k <= m1, k = k + 1,
Print[“ k = ”, k];
GetGAMMA[k - 1];
GetRHS[k];
GetwSpecial[k];
Getw[k];
U[k] = U[k - 1] + w[k]//Simplify;
Getdelta[k];
DELTA[k - 1] = Simplify[Sum[delta[j], { j, 0, k - 1 }]]//Expand;
lambda[k - 1] = DELTA[k - 1] ∗ Exp[-A];
Print[k - 1, “ th approximation of lambda = ”, N[lambda[k - 1],10]];
];
Print[“Successful !”];
];

(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Define the parameters
(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
hbar = -1;
beta = 0;
A = . ;
alpha[2] = 0;
alpha[4] = -1;

(∗Get 10th-order HAM approximation of the 2D Gelfand equation∗)
ham[1,11];
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