Ph.D.
Dissertation
Liao, S.J.: Proposed homotopy analysis techniques for the
solution of nonlinear problems. Ph.D. dissertation, Shanghai Jiaotong
University, 1992.
Books
Liao, S.J.: Beyond Perturbation – Introduction to the
Homotopy Analysis Method. Chapman & Hall/CRC, Boca Raton, 2003. ( Booking )
Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer & Higher Education Press, Heidelberg,
2012. ( Booking )
Selected Journal
Articles
1.
Liao,
S.J.: An approximate solution technique which does not depend upon small
parameters: a special example. Int.
J. Non-Linear Mechanics, 30: 371-380 (1995). [ PDF ]
2.
Liao,
S.J.: An approximate solution technique which does not depend upon small
parameters (Part 2): an application in fluid mechanics. Int. J. Non-Linear
Mechanics, 32: 815-822 (1997). [ PDF ]
3.
Liao,
S.J.: An explicit, totally analytic approximation of BlasiusÕ viscous flow
problems. Int. J. Non-Linear
Mechanics, 34(4): 759-778 (1999). [ PDF ]
4.
Liao,
S.J.: A uniformly valid analytic solution of 2D viscous flow past a
semi-infinite flat plate. J. Fluid
Mechanics, 385: 101-128 (1999). [ PDF ]
5.
Liao,
S.J. and Campo, A.: Analytic solutions of the temperature distribution in
Blasius viscous flow problems. J. Fluid
Mechanics, 453: 411-425 (2002). [ PDF ]
6.
Liao,
S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian
fluids over a stretching sheet. J. Fluid
Mechanics, 488: 189-212 (2003). [ PDF ]
7.
Liao,
S.J.: On the homotopy analysis method for nonlinear problems. Applied
Mathematics and Computation, 147:
499-513 (2004). [ PDF ]
8.
Liao,
S.J.: A new branch of solutions of boundary-layer flows over an impermeable
stretched plate. Int. J. Heat and Mass Transfer, 48: 2529-2539 (2005). [ PDF ]
9.
Liao,
S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat
plate. Studies in Applied Mathematics,
117: 239-263 (2006). [ PDF ]
10. Liao, S.J. and Tan, Y.: A general approach to obtain
series solutions of nonlinear differential equations. Studies in Applied Mathematics, 119: 297-354 (2007). [ PDF ]
11.
S.J. Liao, ÒNotes on the homotopy analysis
method: some definitions and theoremsÓ, Communications
in Nonlinear Science and Numerical Simulation, vol. 14, pp. 983-997, 2009. [
PDF
]
12. Xu, H., Lin, Z.L., Liao, S.J., Wu, J.Z. and Majdalani, J.: Homotopy-based solutions of the Navier–Stokes equations for a
porous channel with orthogonally moving walls. Physics of Fluids, 22(5): 053601 (2010). [ PDF
]
13. Li, Y.J., Nohara, B.T. and Liao,
S.J.: Series solutions of coupled Van der Pol equation
by means of homotopy analysis method. J. Mathematical Physics, 51: 063517
(2010). [ PDF ]
14. Liao, S.J.: An optimal homotopy-analysis approach for
strongly nonlinear differential equations. Communications in Nonlinear
Science and Numerical Simulation, 15:2003-2016 (2010). [ PDF
]
15. Z. Liu, M.
Oberlack, V. N. Grebenev and S.J. Liao,
ÒExplicit series solution of a closure model for the Von Karman-Howarth
equationÓ, ANZIAM J., 52: 179-202
(2010) [ PDF ]
16. 廖世俊,Ò超越摄动:同伦分析方法基本思想及其应用Ó,《力学进展》,2008年,第38卷,第1期,1-34页(中文综述论文)[ PDF ]
17. 廖世俊,Ò同伦分析方法:求解强非线性问题的一个新途径Ó,《科学观察》,2009年,第4卷,第5期,48-49页(热点研究论文特约稿)[ PDF
]
18. 廖世俊,Ò同伦分析方法:研究背景和现状Ó,《科学观察》,2011年,第6卷,第6期,55-58页(热点研究论文特约稿)[ PDF ]